Introduction to NLP

CSES5321/CSEG321

Lecture 8. LSTM RNNs and Neural Machine Translation
Hwaran Lee (hwaranlee@sogang.ac.kr)

Materials are referenced from Stanford CS224n

mailto:hwaranlee@sogang.ac.kr

Lecture Plan

Lecture 8: LSTM RNNs and Neural Machine Translation
1. Exploding and vanishing gradients

2. Long Short-Term Memory Networks (LSTMs)

3. Other uses of RNNs

4. Bidirectional and multi-layer RNNs

5. Intro to Machine Translation and Sequence-to-sequence models (if time permits)

Key Goal: Understanding RNN variants.

Recap

Language Model: A system that predicts the next word

 Recurrent Neural Network: A family of neural networks that:
e Take sequential input of any length; apply the same weights on each step
e Can optionally produce output on each step

 Recurrent Neural Network # Language Model
* RNNs can be used for many other things (see later)

e lLanguage Modeling is a traditional subcomponent of many NLP tasks, all those
involving generating text or estimating the probability of text:

* Now everything in NLP is being rebuilt upon Language Modeling: GPT-3 isan LM!

Generating with an RNN Language Model (“Generating roll outs”)

Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

m favorite season is spring </s>
N N N
fsample sample sample sample Tsample sample
ey el 53 g4 g g
A AN N
U U U U U U
h©___ hD) h(2) h(3) h(4) h(4) h(4)
@ @) @) @ @
@\ Wy (10| Wi (@ Wi |@| Wr |@|Wr |@| Wh |@
@ 1@ 1@ 1@ 1@ 1@ 1@
@ _‘d @ () @ @ @
—) e N N Y Y
W, W, W, W, W, W,
: 7‘1 r—‘—\ r“ : ’_:_*
(1) (2)| © 3) © (4) © (4) (4)
e ‘ € ‘ € ‘ € ‘ € ‘ € @)
o @) O @)) O
Te T2 T T8 J& e

my

favorite

season

IS

spring

Training the parameters of RNNs: Backpropagation for RNNs

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

H.J(t)
OWp, |4

Apply the multivariable chain rule:
=1

ﬁ

Question: How do we calculate this?

t
Answer: Backpropagate over timesteps 9.J " _ 9.J " 8Wh|(i)
i=t, ..,0, summing gradients as you go. oWy = OWh |, OW
This algorithm is called “backpropagation o
through time” [Werbos, P.G., 1988, Neural — Z
Wil

33 Networks 1, and others] i=1

3. Problems with RNNs: Vanishing and Exploding Gradients

J(0)

A

R h(2) h(3) h(4)

(ece o]
[o;;c}

Vanishing gradient intuition

J(4)(9)
N
hD_ he)_ he)_ ROIL
0) 0 0
0 144 O 44 |le@ 14 _ ’
0 1@ @ .
J o) 0 0
oJ@)
ohM ?

46

Vanishing gradient intuition

J(4)(9)
N
R h(2) h(3) h(4)
o () (] (]
0 W O W ___ e \;’
o () 1@ .
@ (] @ @

oJ@ oh(2) §J@)
ohD — 9hM " Fh®

chain rule!

47

Vanishing gradient intuition

J4)(6)
N\
R h(2) h(3) h(4)
O O O O
0 w e w e _ ’
O O O 8
O O O O

oJ%) oh(2)

R~ R

Oh(3) o.J#)

oh® < 9he)

chain rule!

48

Vanishing gradient intuition

J4)(6)

N

R h(2) h(3) h(4)

@ @ @ @

O w |e W e W e

@ @ [1@

@ @ @ @
0JH oh?) Oh(3) Oh® o.J4)

— X

Oh1) oh(1) ah® R " oh@

chain rule!

Vanishing gradient intuition

J(4)(9)

N

R h(2) h(3) h(4)

() @ @ ()

O W ® L W . |®

() K J @ 1@

@ @ @ @
A Oh?) o.J%)
Oh™ — |ohM < Oh@®

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

What happens if these are small?
backpropagates further

49

Vanishing gradient proof sketch (linear case)

® — (t-1) (1)

* Recall: h* = U(Whh + Wz +b1)

 What if ¢ were the identity function, o(z) =z ?
Oh®) , - '
oRt-1) — diag (C” (Whh(t D woa® + b1)) Wy, (chain rule)

e Consider the gradient of the loss JD (@) on step?, with respect
to the hidden state h9) on some previous step j. Let ¢ = § — j
8JD (@) aJ9(0) H oh(®)

or@) AR Sht-1) (chain rule)
I<t<s
(i) 7@ (g ©
= 9J (9) H W, = .()Wﬁ (value of oh)
oh® 1L Oh() T SR

If W, is “small”, then this term gets
exponentially problematic as £ becomes large

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
50 (and supplemental materials), at http://proceedings.mlr.press/v28/pascanul3-supp.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Vanishing gradient proof sketch (linear case)

sufficient but

* What's wrong with W7, ? not necessary

[!
e Consider if the eigenvalues of W, are all less than 1:
A1, Ao, A, < 1
d1,42;---,49, (eigenvectors)

: (i) : , :
- We can write 22" w using the eigenvectors of W}, as a basis:

Oh(%)

0J™ (0 n
Bh(g)) W% - y: Ci)}fqi ~ 0 (for large ¢)
: =1

Approaches 0 as £ grows, so gradient vanishes

 What about nonlinear activations o (i.e., what we use?)
 Pretty much the same thing, except the proof requires A; < 7y
for some ¥ dependent on dimensionality and ¢

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
(and supplemental materials), at http://pr ings.mlr.pr

51

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?

J2)(6) J*) ()
N A
R h(2) h(3) h(4)
@ @ @ @
ol . W O W ___|e W . |®
@ @ @ @
@ @ @ @

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

52

Effect of vanishing gradient on RNN-LM

LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

 Tolearn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7t step and the target word “tickets” at the end.

e Butif the gradient is small, the model can’t learn this dependency
* So, the model is unable to predict similar long-distance dependencies at test time

53

Why is exploding gradient a problem?

* If the gradient becomes too big, then the SGD update step becomes too big:

learning rate

grew — eold —EVQJ(Q)

J

Y

gradient

* This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)

* You think you’ve found a hill to climb, but suddenly you’re in lowa

* In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

I 54

Gradient clipping: solution for exploding gradient

e Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping
g+ %5
if ||g|| > threshold then

~ , threshold 4
& g &

end if

e Intuition: take a step in the same direction, but a smaller step

* In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

5§ Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlrpress/v28/pascanul3.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf

How to fix the vanishing gradient problem?

 The main problem is that jt’s too difficult for the RNN to learn to preserve information
over many timesteps.

* Inavanilla RNN, the hidden state is constantly being rewritten
) = o (Whh(t_l) + W,a® 4 b)

* First off next time: How about an RNN with separate memory which is added to?
e LSTMs

 And then: Creating more direct and linear pass-through connections in model
* Attention, residual connections, etc.

56

Our starting point: vanishing gradients

J(4)(9)

N

R h(2) h(3) h(4)

() @ @ ()

O W ® L W . |®

() K J @ 1@

@ @ @ @
A Oh?) o.J%)
Oh™ — |ohM < Oh@®

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

What happens if these are small?
backpropagates further

Long Short-Term Memory RNNs (LSTMs)

e A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the problem of
vanishing gradients

* Everyone cites that paper but really a crucial part of the modern LSTM is from Gers et al. (2000) 9

* Only started to be recognized as promising through the work of S’s student Alex Graves c. 2006
* Work in which he also invented CTC (connectionist temporal classification) for speech recognition

e But only really became well-known after Hinton brought it to Google in 2013
* Following Graves having been a postdoc with Hinton

Hochreiter and Schmidhuber, 1997. Long short-term memory. https://www.bioinf.jku.at/publications/older/2604.pd f
Gers, Schmidhuber, and Cummins, 2000. Learning to Forget: Continual Prediction with LSTM. https://dl.acm.org/doi/10.1162/089976600300015015

Graves, Fernandez, Gomez, and Schmidhuber, 2006. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets.
https://www.cs.toronto.edu/~graves/icml_2006.pdf

https://www.bioinf.jku.at/publications/older/2604.pdf
https://dl.acm.org/doi/10.1162/089976600300015015
https://www.cs.toronto.edu/~graves/icml_2006.pdf

Long Short-Term Memory RNNs (LSTMs)

e Onstept, there is a hidden state h® and a cell state ¢®
e Both are vectors length n
* The cell stores long-term information
* The LSTM can read, erase, and write information from the cell

* The cell becomes conceptually rather like RAM in a computer

* The selection of which information is erased/written/read is controlled by three corresponding gates
* The gates are also vectors of length n
* On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between
* The gates are dynamic: their value is computed based on the current context

Long Short-Term Memory (LSTM)

We have a sequence of inputs x(), and we will compute a sequence of hidden states h(®) and cell states
c®. On timestep t:

Sigmoid function: all gate

Forget gate: controls what is kept vs values are between 0and 1
forgotten, from previous cell state \ —
(1) — (t—1) (t)
Input gate: controls what parts of the Y =|o th + Ufm + bf S
new cell content are written to cell \ . i1 . §D
z()—o(IfVih(_)+Uim()+bi) 2
Output gate: controls what parts of GEJ
cell are output to hidden state ~~ oY) =g (Woh(t_l) + anc(t) + bo) 3
©
New cell content: this is the new >~ %
content to be written to the cell 9
>
L
Cell state: erase (“forget”) some ~(t) (t—1) (t) $
content from last cell state, and write ¢’ = tanh (Wch’ +Ucx™ + bc) §
(“input”) some new cell content _] - -
Hidden state: read (“output”) some , h(f) — O(t) o tanh c(t) I p
content from the cell
\ Gates are applied using element-wise

7 (or Hadamard) product: (O

Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

| | |

- N\ D 4 R
—>—® o > —»

&>
A [l A
(o] [&m] [

— > —

\ J y 9 4

O—>>->—<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

Write some new cell content @

Forget some

Compute the

\ % The + sign is the secret!
[
—®

» Ci

Cr.1 =P @
| (o)
ft t E’t t e

forget gate

Compute the
input gate

—— | Output some cell content
to the hidden state

® Compute the
new cell content

O

Neural Network Pointwise
Layer Operation

—_ > <<

Vector

Transfer Concatenate Copy

—p h;

Compute the
output gate

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

How does LSTM solve vanishing gradients?

e The LSTM architecture makes it much easier for an RNN to
preserve information over many timesteps

* e.g., if the forget gate is set to 1 for a cell dimension and the input gate
set to 0, then the information of that cell is preserved indefinitely.

* In contrast, it’s harder for a vanilla RNN to learn a recurrent weight
matrix W, that preserves info in the hidden state

* |In practice, you get about 100 timesteps rather than about 7

 However, there are alternative ways of creating more direct and linear
pass-through connections in models for long distance dependencies

10

Is vanishing/exploding gradient just an RNN problem?

 No! It can be a problem for all neural architectures (including feed-forward and
convolutional), especially very deep ones.

* Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it
backpropagates

* Thus, lower layers are learned very slowly (i.e., are hard to train)
* Another solution: lots of new deep feedforward/convolutional architectures add more
direct connections (thus allowing the gradient to flow)

For example: X

Y

 Residual connections aka “ResNet” weight layer
. . Flx relu
* Also known as skip-connections () _— X
weight layer identity

 The identity connection
preserves information by default

e This makes deep networks much Figure 2. Residual learning: a building block.
easier to train

11 "Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385. pdf

https://arxiv.org/pdf/1512.03385.pdf

Is vanishing/exploding gradient just a RNN problem?

Other methods:

* Dense connections aka “DenseNet” * Highway connections aka “HighwayNet”
Similar to residual connections, but the identity
connection vs the transformation layer is
controlled by a dynamic gate

* Inspired by LSTMs, but applied to deep
feedforward/convolutional networks

* Directly connect each layer to all future layers!

—{ T +—

v
— H X —l
Information ~ TN

Highway (\" >7 XY)

— r'y S

Figure 1: A 5-layer dense block with a growth rate of k£ = 4. C
Each layer takes all preceding feature-maps as input.

Highway Circuit

* Conclusion: Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable
due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

”Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993.pdf "Highway Networks", Srivastava et al, 2015. https://arxiv.org/pdf/1505.00387. pdf

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paclo//ps/tnn-94-gradient.pdf

12

https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1505.00387.pdf
http://ai.dinfo.unifi.it/paolo/ps/tnn-94-gradient.pdf

LSTMs: real-world success

 In2013-2015, LSTMs started achieving state-of-the-art results

* Successful tasks include handwriting recognition, speech recognition, machine
translation, parsing, and image captioning, as well as language models

e LSTMs became the dominant approach for most NLP tasks

 Recently (2019-2024), Transformers have become dominant for all tasks

* For example, in WMT (a Machine Translation conference + competition):
* In WMT 2014, there were 0 neural machine translation systems (!)
* In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)
* In WMT 2019: “RNN” 7 times, "Transformer” 105 times

 Now, ‘State space models’ (RNN++) are making a comeback

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf
Source: "Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf

13

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

4. Bidirectional and Multi-layer RNNs: motivation

14

Task: Sentiment Classification

posi

“ =

E.
™

Sentence
encoding

~
J

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

A4

JANEN
@ @ o @
@ @) | ®
@ @) 1@
@ @ o _Cd
T 17 T 4
the movie was terribly

exciting

A4

These contextual
representations only
contain information
about the /eft context
(e.g. “the movie was”).

What about right
context?

In this example,
“exciting” is in the right
context and this
modifies the meaning of
“terribly” (from negative
to positive)

This contextual representation of “terribly”

BidirECtionaI RN NS has both left and right context!
_/
B @ B @ B B
(@) (@) (@) @) (@) Q
(@) (@) Q @) (@) (@)
Concatenated : : : : : :
hidden states ° ° o o o o
() () @ O) @
() () () ("] () @
=
@) (@) (@) (@) (@) @)
Backward RNN : : : : : :
@) (@) @) O (@) @)
QR B
Forward RNN : > : > : > : > : 5
ﬁ/ 5 %/ ° W/

the movie was terribly exciting !
15

Bidirectional RNNs

This is a general notation to mean
“compute one forward step of the

RNN” — it could be a simple RNN or
LSTM computation.

On timestep t:

Forward RNN ﬁ(t) — RNNFw(h>(t—1), :U(t)) Generally, these
two RNNs h
Backward RNN %(t) — RNNBW(%(HU,;B(”) wo s have

separate weights
Concatenated hidden states | h(t) |= [I{(t); h (t)]

\

We regard this as “the hidden
state” of a bidirectional RNN.

This is what we pass on to the
6 next parts of the network.

Bidirectional RNNs: simplified diagram

N
A4

— 0000

A4

N
N
N
\4

— o000 |

— see0@]

T 11

the movie was terribly exciting

!

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be the
concatenated forwards+backwards states

Bidirectional RNNs

* Note: bidirectional RNNs are only applicable if you have access to the entire input
sequence

* They are not applicable to Language Modeling, because in LM you only have left
context available.

* |f you do have entire input sequence (e.g., any kind of encoding), bidirectionality is
powerful (you should use it by default).

* For example, BERT (Bidirectional Encoder Representations from Transformers) is a
powerful pretrained contextual representation system built on bidirectionality.

* You will learn more about transformers, including BERT, in a couple of weeks!

18

Multi-layer RNNs

* RNNs are already “deep” on one dimension (they unroll over many timesteps)

 We can also make them “deep” in another dimension by
applying multiple RNNs —this is a multi-layer RNN.

* This allows the network to compute more complex representations

* The lower RNNs should compute lower-level features and the higher RNNs should
compute higher-level features.

e Multi-layer RNNs are also called stacked RNNs.

19

Multi-layer RNNs The hidden states from RNN layer i
are the inputs to RNN layer j+1

))))))
@ @ @ @ @ ()
RNN layer 3 ® | @ | @ | @ @ @
@ @ @ @ () ()
@ () @ @ @ @
e y
))))) M)
() () () @ @ ()
@ @
RNN layer 2 : : : >l @ >l @ > :
() () () @ @ ()
\~— —) S— ~— N/) S—
N N N N N N
) S)))
@ () @ @ @
@
RNN layer 1 : > : > : >l @ > : >
@ @ @ @ @

!

~
>
Q)

movie was terribly exciting
20

Multi-layer RNNs in practice

21

Multi-layer or stacked RNNs allow a network to compute more complex representations
— they work better than just have one layer of high-dimensional encodings!

* The lower RNNs should compute lower-level features and the higher RNNs should
compute higher-level features.

High-performing RNNs are usually multi-layer (but aren’t as deep as convolutional or
feed-forward networks)

For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation, 2 to 4
layers is best for the encoder RNN, and 4 layers is best for the decoder RNN

« Often 2 layers is a lot better than 1, and 3 might be a little better than 2

* Usually, skip-connections/dense-connections are needed to train deeper RNNs
(e.g., 8 layers)
Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
* You will learn about Transformers later; they have a lot of skipping-like connections

“Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

https://arxiv.org/pdf/1703.03906.pdf

Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the
source language) to a sentence y in another language (the target language).

X: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

— Rousseau

22

The early history of MT: 1950s

« Machine translation research began in the early 1950s on machines less
powerful than high school calculators (before term “A.l.” coined!)

« Concurrent with foundational work on automata, formal languages,
probabilities, and information theory

« MT heavily funded by military, but basically just simple rule-based
systems doing word substitution

« Human language is more complicated than that, and varies more across
languages!

 Little understanding of natural language syntax, semantics, pragmatics
 Problem soon appeared intractable

1 minute video showing 1954 MT:
I https://youtu.be/K-HfpsHP mvw

https://youtu.be/K-HfpsHPmvw

The early history of MT: 1950s

' ELECTRONIC
i 4 (BRAIN s

Trandlales |
RUSSIAN to BNGLISH

PARANOUNT NEWS -

1990s-2010s: Statistical Machine Translation

* Core idea: Learn a probabilistic model from data

e Suppose we’re translating French - English.
« We want to find best English sentence y, given French sentence x

argmax, P(y|x)
* Use Bayes Rule to break this down into two components to be learned
separately:
= argmax, P(z|y)P(y)
\ A J
Y Y
Translation Model Language Model

Models how words and phrases Models how to write

should be translated (fidelity). good English (fluency).
25 Learned from parallel data. Learned from monolingual data.

1990s—2010s: Statistical Machine Translation

e SMT was a huge research field
* The best systems were extremely complex
* Hundreds of important details
« Systems had many separately-designed subcomponents

* Lots of feature engineering

* Need to design features to capture particular language phenomena
* Required compiling and maintaining extra resources

 Like tables of equivalent phrases

* Lots of human effort to maintain
* Repeated effort for each language pair!

26

¥
o
o
Fy M

oA

NMT: the first big success story of NLP Deep Learning

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

e 2014: First seg2seq paper published [Sutskever et al. 2014]

e 2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

B Microsoft &svstran Google
BaimE E8mus Tencentfil S)iwmiEz

 This is amazing!
* SMT systems, built by hundreds of engineers over many years, outperformed by
NMT systems trained by small groups of engineers in a few months
I 28

29

Neural Machine Translation (NMT)

The sequence-to-sequence model

Target sentence (output)

Encoding of the source sentence. g A N
Provides initial hidden state . . :
for Decoder RNN. he hit me with a pie <END>
\ = £ £ = £ £ £
pd o0 0 50 50 0 S0 0 w)
Z © M © © © © m© ('D
o o)) @ @ o o o) o) o) o) o) 3
o el |© o |@® 1O - |0 = |O[:|O| - |O o o o
o]] e o] 10 (@) o o o o o ®
o o e e o o @) o o o o o _-
O
L =z
i m’ a entarte <START> he hit me with a pie
N J
Y

Source sentence (input)

Encoder RNN produces
an encoding of the
source sentence.

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

Sequence-to-sequence is versatile!

 The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation

* If the input and output are sequences, we call it a seq2seq model

e Sequence-to-sequence is useful for more than just MIT
 Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text - short text)
 Dialogue (previous utterances - next utterance)
* Parsing (input text - output parse as sequence)

* Code generation (natural language - Python code)

30

Neural Machine Translation (NMT)

e The sequence-to-sequence modelis an example of a Conditional Language Model

* Language Model because the decoder is predicting the next word of the target sentence y
* Conditional because its predictions are also conditioned on the source sentence x

e NMT directly calculates P(y|z) :

P(y|$) — P(y1|$) P(y2|y19$) P(y3|yla Y2, J’.) cee P(yT|y15 sy yT—lam)
\ > J
Probability of next target word, given

target words so far and source sentence x

 Question: How to train an NMT system?
* (Easy) Answer: Get a big parallel corpus...
* Butthere is now exciting work on “unsupervised NMT”, data augmentation, etc.

31

Training a Neural Machine Translation system

32

Encoder RNN

= negative log = negative log = negative log
prob of “he” prob of “with” prob of <END>

Jil+ J2 + 13 H Jal+ Js + Js H [y

N A N AN A N

J = %th

~
7
~
Tl
~
T
~
7
~
Tl
N
Tl
~
7

o : : : o o o o o 0] (@)
. | ~ S S ~ 5 S S
o || ‘e[|® o—>el—=le—lo 18— 1o
) ())) o o o o o 0] o
il m’ a entarté <START> he hit me with a pie
N J N J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

NNY Japodag

Seqg2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Multi-layer deep encoder-decoder machine translation net
[Sutskever et al. 2014; Luong et al. 2015]

33

Encoder:
Builds up
sentence
meaning

Source
sentence

The hidden states from RNN layer j
are the inputs to RNN layer j+1

protest escala/t§ weeer\:l <EQS>

-0.4 -0.3

|

0.6
0.1
0.3
0.1 0.1

Die Proteste waren am Wochenende eskaliert <EOS> p&(yests vkyalated \?ver

Conditioning =
Bottleneck

(X3
-0.1
-0.7

Translation
generated

Decoder

Feeding in
last word

The final piece: the bottleneck problem in RNNs

Encoding of the
source sentence.

Target sentence (output)

A

(N\

he with a pie <END>
P ¢
o (] o () (] o (@) o o o o o 9
5 o |of Jo| | (0O 4O _.Jo| JO ol J(o] (o J©o Q.
yo) e |©® o |'|O® 101 1o 710 “|o| o] 10O o @®
S o e e o o o o o o o o -
C N =2

il a m’ entarté <START> he hit me with a pie
\ J
Y

Source sentence (input)

Problems with this architecture?

34

Issues with recurrent models: Linear interaction distance

* O(sequence length) steps for distant word pairs to interact means:
* Hard to learn long-distance dependencies (because gradient problems!)

 Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

The chef who ...

Info of chef has gone through
I O(sequence length) many layers!
35

Issues with recurrent models: Lack of parallelizability

* Forward and backward passes have O(sequence length)
unparallelizable operations

* GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

—b... e —>

4
ﬂ —> 000 — — 000 —»i

I Numbers indicate min # of steps before a state can be computed
36

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: Recap
	Slide 4: Our starting point: vanishing gradients
	Slide 5: Long Short-Term Memory RNNs (LSTMs)
	Slide 6: Long Short-Term Memory RNNs (LSTMs)
	Slide 7: Long Short-Term Memory (LSTM)
	Slide 8: Long Short-Term Memory (LSTM)
	Slide 9: Long Short-Term Memory (LSTM)
	Slide 10: How does LSTM solve vanishing gradients?
	Slide 11: Is vanishing/exploding gradient just an RNN problem?
	Slide 12: Is vanishing/exploding gradient just a RNN problem?
	Slide 13: LSTMs: real-world success
	Slide 14: 4. Bidirectional and Multi-layer RNNs: motivation
	Slide 15: Bidirectional RNNs
	Slide 16: Bidirectional RNNs
	Slide 17: Bidirectional RNNs: simplified diagram
	Slide 18: Bidirectional RNNs
	Slide 19: Multi-layer RNNs
	Slide 20: Multi-layer RNNs
	Slide 21: Multi-layer RNNs in practice
	Slide 22: Machine Translation
	Slide 23: The early history of MT: 1950s
	Slide 24: The early history of MT: 1950s
	Slide 25: 1990s-2010s: Statistical Machine Translation
	Slide 26: 1990s–2010s: Statistical Machine Translation
	Slide 27
	Slide 28: NMT: the first big success story of NLP Deep Learning
	Slide 29: Neural Machine Translation (NMT)
	Slide 30: Sequence-to-sequence is versatile!
	Slide 31: Neural Machine Translation (NMT)
	Slide 32: Training a Neural Machine Translation system
	Slide 33: Multi-layer deep encoder-decoder machine translation net
	Slide 34: The final piece: the bottleneck problem in RNNs
	Slide 35: Issues with recurrent models: Linear interaction distance
	Slide 36: Issues with recurrent models: Lack of parallelizability
	Slide 37: Attention
	Slide 38: The starting point: mean-pooling for RNNs
	Slide 39: Attention is weighted averaging, which lets you do lookups!
	Slide 40: Sequence-to-sequence with attention
	Slide 41: Sequence-to-sequence with attention
	Slide 42: Sequence-to-sequence with attention
	Slide 43: Sequence-to-sequence with attention
	Slide 44: Sequence-to-sequence with attention
	Slide 45: Sequence-to-sequence with attention
	Slide 46: Sequence-to-sequence with attention
	Slide 47: Sequence-to-sequence with attention
	Slide 48: Sequence-to-sequence with attention
	Slide 49: Sequence-to-sequence with attention
	Slide 50: Sequence-to-sequence with attention
	Slide 51: Sequence-to-sequence with attention
	Slide 52: Attention: in equations
	Slide 53: Attention is parallelizable, and solves bottleneck issues.
	Slide 54: Attention is great!
	Slide 57: Attention is a general Deep Learning technique
	Slide 58: Attention is a general Deep Learning technique
	Slide 59: In summary

