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Lecture Plan

Lecture 9: LSTM RNNs and Neural Machine Translation (2)

1. Intro to Machine Translation and Sequence-to-sequence models.

2. Attention mechanisms.

Key Goal: Understanding Seg2seq models and Attention mechanisms.



Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the
source language) to a sentence y in another language (the target language).

X: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

— Rousseau
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NMT: the first big success story of NLP Deep Learning

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

e 2014: First seg2seq paper published [Sutskever et al. 2014]

e 2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

B Microsoft &svstran  Google
BaimE E8mus  Tencentfil  S)iwmiEz

 This is amazing!
* SMT systems, built by hundreds of engineers over many years, outperformed by
NMT systems trained by small groups of engineers in a few months
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Neural Machine Translation (NMT)

The sequence-to-sequence model

Target sentence (output)
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Source sentence (input)

Encoder RNN produces
an encoding of the
source sentence.

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.




Sequence-to-sequence is versatile!

 The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation

* If the input and output are sequences, we call it a seq2seq model

e Sequence-to-sequence is useful for more than just MIT
 Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text - short text)
 Dialogue (previous utterances - next utterance)
* Parsing (input text - output parse as sequence)

* Code generation (natural language - Python code)
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Neural Machine Translation (NMT)

e The sequence-to-sequence modelis an example of a Conditional Language Model

* Language Model because the decoder is predicting the next word of the target sentence y
* Conditional because its predictions are also conditioned on the source sentence x

e NMT directly calculates P(y|z) :

P(y|$) — P(y1|$) P(y2|y19$) P(y3|yla Y2, J’.) cee P(yT|y15 sy yT—lam)
\ > J
Probability of next target word, given

target words so far and source sentence x

 Question: How to train an NMT system?
* (Easy) Answer: Get a big parallel corpus...
* Butthere is now exciting work on “unsupervised NMT”, data augmentation, etc.
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Training a Neural Machine Translation system
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Seqg2seq is optimized as a single system. Backpropagation operates “end-to-end”.




Multi-layer deep encoder-decoder machine translation net
[Sutskever et al. 2014; Luong et al. 2015]
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sentence

The hidden states from RNN layer j
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The final piece: the bottleneck problem in RNNs

Encoding of the
source sentence.

Target sentence (output)
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Problems with this architecture?
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Issues with recurrent models: Linear interaction distance

* O(sequence length) steps for distant word pairs to interact means:
* Hard to learn long-distance dependencies (because gradient problems!)

 Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

The chef who ...

Info of chef has gone through
I O(sequence length) many layers!
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Issues with recurrent models: Lack of parallelizability

* Forward and backward passes have O(sequence length)
unparallelizable operations

* GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

—b... e —>

4
ﬂ —> 000 — — 000 —»i

I Numbers indicate min # of steps before a state can be computed
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Attention

e Attention provides a solution to the bottleneck problem.

 Coreidea: on each step of the decoder, use direct connection to the encoder to focus
on a particular part of the source sequence

* First, we will show via diagram (no equations), then we will show with equations
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The starting point: mean-pooling for RNNs

positive How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all
hidden states

Sentence
encoding
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» Starting point: a very basic way of ‘passing information from the encoder’ is to average
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Attention is weighted averaging, which lets you do lookups!

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the matches all keys softly, In a lookup table, we have a table of keys
to a weight between 0 and 1. The keys’ values that map to values. The matches
are multiplied by the weights and summed. one of the keys, returning its value.

: k I
keys values Weighted €ys values

Sum

ki vt . v

b 2

k2 v2 query !

query output 4 X

C Y
g k3 V3 Z% output
Wi y d vi —> v4

v
e v5

k5 v5
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Sequence-to-sequence with attention

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a

particular part of the source sequence
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Sequence-to-sequence with attention

dot product
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Sequence-to-sequence with attention

dot product
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Sequence-to-sequence with attention

dot product
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Sequence-to-sequence with attention

On this decoder timestep, we’re

- mostly focusing on the first
S 2 / encoder hidden state (“he”)
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Sequence-to-sequence with attention
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Use the attention distribution to take a

weighted sum of the encoder hidden states.

The attention output mostly contains
information from the hidden states that
received high attention.
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Sequence-to-sequence with attention

Attention he
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Decoder RNN
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Decoder RNN
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Attention: in equations

 We have encoder hidden states h1,...,hxn € R"

e Ontimestep t, we have decoder hidden state s, € R"
: t :

 We get the attention scores € for this step:

e! =[s{hy,...,s{hy] € RY

* We take softmax to get the attention distribution o' for this step (this is a probability distribution and
sumsto 1)

o' = softmax(e’) € RY

- Weuse a'totakea weighted sum of the encoder hidden states to get the attention output a;
N
a; = Z Oézh@ = Rh
i=1

* Finally we concatenate the attention output a; with the decoder hidden
state St and proceed as in the non-attention seq2seq model

- la; st] € R2h




Attention is parallelizable, and solves bottleneck issues.

* Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

* We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.

 Number of unparallelizable operations does not increase with sequence length.
 Maximum interaction distance: O(1), since all words interact at every layer!

qgttention All words attend

to all words in

TLLLEL: ous |
attention previous layer,

most arrows here

N N
embedding . . . . . ﬁ . are omitted
h, h,

hr
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Attention is great!

\
W
Attention significantly improves NMT performance /

* It’s very useful to allow decoder to focus on certain parts of the source

Attention provides a more “human-like” model of the MT process

* You can look back at the source sentence while translating, rather than needing to remember it all
e Attention solves the bottleneck problem

* Attention allows decoder to look directly at source; bypass bottleneck

Attention helps with the vanishing gradient problem
* Provides shortcut to faraway states

Attention provides some interpretability

* By inspecting attention distribution, we see what the decoder was focusing on
* We get (soft) alignment for free!

il
* The network just learned alignment by itself H

hit

me
with
a
pie

a

©
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Attention is a general Deep Learning technique

We’'ve seen that attention is a great way to improve the sequence-to-sequence model
for Machine Translation.

However: You can use attention in many architectures
(not just seg2seq) and many tasks (not just MT)

More general definition of attention:

* Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.
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We sometimes say that the query attends to the values.

For example, in the seq2seq + attention model, each decoder hidden state (query)
attends to all the encoder hidden states (values).




Attention is a general Deep Learning technique

 More general definition of attention:

* Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.

Intuition:

* The weighted sum is a selective summary of the information contained in the values,
where the query determines which values to focus on.

e Attention is a way to obtain a fixed-size representation of an arbitrary set of
representations (the values), dependent on some other representation (the query).

Upshot:

* Attention has become the powerful, flexible, general way pointer and memory

manipulation in all deep learning models. A new idea from after 2010! From NMT!
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In summary

Lots of new information today! What are some of tha nrartical talrazwimue?
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3. Encoder-Decoder Neural Machine

Translation Systems work very well 4. Attention is a general,
59 useful technique
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