Introduction to NLP

CSES5321/CSEG321

Lecture 9. LSTM RNNs and Neural Machine Translation
Hwaran Lee (hwaranlee@sogang.ac.kr)

Materials are referenced from Stanford CS224n

mailto:hwaranlee@sogang.ac.kr

Lecture Plan

Lecture 9: LSTM RNNs and Neural Machine Translation (2)

1. Intro to Machine Translation and Sequence-to-sequence models.

2. Attention mechanisms.

Key Goal: Understanding Seg2seq models and Attention mechanisms.

Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the
source language) to a sentence y in another language (the target language).

X: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

— Rousseau

22

NMT: the first big success story of NLP Deep Learning

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

e 2014: First seg2seq paper published [Sutskever et al. 2014]

e 2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

B Microsoft &svstran Google
BaimE E8mus Tencentfil S)iwmiEz

 This is amazing!
* SMT systems, built by hundreds of engineers over many years, outperformed by
NMT systems trained by small groups of engineers in a few months
I 28

29

Neural Machine Translation (NMT)

The sequence-to-sequence model

Target sentence (output)

Encoding of the source sentence. g A N
Provides initial hidden state . . :
for Decoder RNN. he hit me with a pie <END>
\ = £ £ = £ £ £
pd o0 0 50 50 0 S0 0 w)
Z © M © © © © m© ('D
o o)) @ @ o o o) o) o) o) o) 3
o el |© o |@® 1O - |0 = |O[:|O| - |O o o o
o]] e o] 10 (@) o o o o o ®
o o e e o o @) o o o o o _-
O
L =z
i m’ a entarte <START> he hit me with a pie
N J
Y

Source sentence (input)

Encoder RNN produces
an encoding of the
source sentence.

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

Sequence-to-sequence is versatile!

 The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation

* If the input and output are sequences, we call it a seq2seq model

e Sequence-to-sequence is useful for more than just MIT
 Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text - short text)
 Dialogue (previous utterances - next utterance)
* Parsing (input text - output parse as sequence)

* Code generation (natural language - Python code)

30

Neural Machine Translation (NMT)

e The sequence-to-sequence modelis an example of a Conditional Language Model

* Language Model because the decoder is predicting the next word of the target sentence y
* Conditional because its predictions are also conditioned on the source sentence x

e NMT directly calculates P(y|z) :

P(y|$) — P(y1|$) P(y2|y19$) P(y3|yla Y2, J’.) cee P(yT|y15 sy yT—lam)
\ > J
Probability of next target word, given

target words so far and source sentence x

 Question: How to train an NMT system?
* (Easy) Answer: Get a big parallel corpus...
* Butthere is now exciting work on “unsupervised NMT”, data augmentation, etc.

31

Training a Neural Machine Translation system

32

Encoder RNN

= negative log = negative log = negative log
prob of “he” prob of “with” prob of <END>

Jil+ J2 + 13 H Jal+ Js + Js H [y

N A N AN A N

J = %th

~
7
~
Tl
~
T
~
7
~
Tl
N
Tl
~
7

o : : : o o o o o 0] (@)
. | ~ S S ~ 5 S S
o || ‘e[|® o—>el—=le—lo 18— 1o
) ())) o o o o o 0] o
il m’ a entarté <START> he hit me with a pie
N J N J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

NNY Japodag

Seqg2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Multi-layer deep encoder-decoder machine translation net
[Sutskever et al. 2014; Luong et al. 2015]

33

Encoder:
Builds up
sentence
meaning

Source
sentence

The hidden states from RNN layer j
are the inputs to RNN layer j+1

protest escala/t§ weeer\:l <EQS>

-0.4 -0.3

|

0.6
0.1
0.3
0.1 0.1

Die Proteste waren am Wochenende eskaliert <EOS> p&(yests vkyalated \?ver

Conditioning =
Bottleneck

(X3
-0.1
-0.7

Translation
generated

Decoder

Feeding in
last word

The final piece: the bottleneck problem in RNNs

Encoding of the
source sentence.

Target sentence (output)

A

(N\

he with a pie <END>
P ¢
o (] o () (] o (@) o o o o o 9
5 o |of Jo| | (0O 4O _.Jo| JO ol J(o] (o J©o Q.
yo) e |©® o |'|O® 101 1o 710 “|o| o] 10O o @®
S o e e o o o o o o o o -
C N =2

il a m’ entarté <START> he hit me with a pie
\ J
Y

Source sentence (input)

Problems with this architecture?

34

Issues with recurrent models: Linear interaction distance

* O(sequence length) steps for distant word pairs to interact means:
* Hard to learn long-distance dependencies (because gradient problems!)

 Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

The chef who ...

Info of chef has gone through
I O(sequence length) many layers!
35

Issues with recurrent models: Lack of parallelizability

* Forward and backward passes have O(sequence length)
unparallelizable operations

* GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

—b... e —>

4
ﬂ —> 000 — — 000 —»i

I Numbers indicate min # of steps before a state can be computed
36

Attention

e Attention provides a solution to the bottleneck problem.

 Coreidea: on each step of the decoder, use direct connection to the encoder to focus
on a particular part of the source sequence

* First, we will show via diagram (no equations), then we will show with equations

37

The starting point: mean-pooling for RNNs

positive How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all
hidden states

Sentence
encoding

\ 4
A\ 4
\ 4

—> 0000

v

—> 000®

$

—> 0000

| |

overall enjoyed the movie

» Starting point: a very basic way of ‘passing information from the encoder’ is to average

38

Attention is weighted averaging, which lets you do lookups!

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the matches all keys softly, In a lookup table, we have a table of keys
to a weight between 0 and 1. The keys’ values that map to values. The matches
are multiplied by the weights and summed. one of the keys, returning its value.

: k I
keys values Weighted €ys values

Sum

ki vt . v

b 2

k2 v2 query !

query output 4 X

C Y
g k3 V3 Z% output
Wi y d vi —> v4

v
e v5

k5 v5
39

Sequence-to-sequence with attention

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a

particular part of the source sequence
dot product

Attention
scores
—

o
o 0 ol (o |@ o Q
= | |o| |o| .|o 5| © Q
O 0 o |o| @ 1o ©
S o e |o ® 6] =

il a m’ entarté <START>
\ J
Y

40 Source sentence (input)

Sequence-to-sequence with attention

dot product

Attention
scores
—

v

—>{ 0000

St

v

—> 0000

Encoder
NN

|

m’ entarté <START>
\)
Y
I a1 Source sentence (input)

H_/
NNY 49pP023a(

— 0000

QR —> 0000

-~
~—

Sequence-to-sequence with attention

dot product

Attention
scores
—

(W)
o D
3] [~ (*) o o 9
= | |o| |o| .|o 1
o e e] e ®
5 () () () o e
=2
T T T T -
il a m’ entarté <START>

1\)
Y
42 Source sentence (input)

Sequence-to-sequence with attention

dot product

Attention
scores
—

O
o D
3] [~ () o o 9
= | |o| |o| .|o 1
9 o o (] (] @
5 () () () o)

=2

il a m’ entarté <START>

1\)
Y
43 Source sentence (input)

Sequence-to-sequence with attention

On this decoder timestep, we’re

- mostly focusing on the first
S 2 / encoder hidden state (“he”)
e
c 9
{1
z ,Q y | s | | s | | s |

T Take softmax to turn the scores

_ . e) . .

= into a probability distribution
S §
C

o
28 L]
<

w)
] o) o| (o o) 3
()
S Z] |o| .o Je| .o 8
O] ()] o) @
5 o |of |of |o =
=
il a m’ entarté <START>
N J
Y

44 Source sentence (input)

Sequence-to-sequence with attention

45

Attention

Attention

Encoder

distribution

scores

RNN

Attention
output

SN0

-
<«

[~ (*) () o
| |O N (] (]
(<] (*] (<] (<]
(*) () o o
il a m’ entarté
L J

Y
Source sentence (input)

<START>

Use the attention distribution to take a

weighted sum of the encoder hidden states.

The attention output mostly contains
information from the hidden states that
received high attention.

NNY 49pP023a(

Sequence-to-sequence with attention

Attention he

output A -
Concatenate attention output
c e A~ . .
S92 , V1 with decoder hidden state, then
=~ - [e :.' '-_“ ".‘.‘ ~
€ 3 A use to compute Yy, as before
9
z Z y [|]
©
C
29
= | -
o O S}
- O
0
<
w)
D
] o o| (o 0 o) Q
= | |o| |o| .|o 5| © Q
S o) o e[|® ”lo @
S e (o |o |@ o =
T T T T -
il a m’ entarté <START>
\ v J

46 Source sentence (input)

Sequence-to-sequence with attention

Attention hit

output A
. P 5
o - Sy T 2
s 5 A
g 2 i
g0 = =
©
C
O wn
2 8
C
o
23
<
w)
-]
3 _ o] (o] (o] (@ o| [o s
S Z : > : >-: > : > 8 8 Sometimes we take the %
S e o o o o) o attention output from the)
previous step, and also %
feed it into the decoder
il a m entarté <START> he / (along Wi_th the usual
\ y decoder input). We do
Y this in Assignment 4.

47 Source sentence (input)

Sequence-to-sequence with attention

Attention me
output T
S . 3
% 5 A
Q2
22 - % 3
[
s
s}
c = C C
)} v
<
®
3 o (o |o |o o| (o] |o Q
= o (o] o .o Jol Jo| o o
o (<]] e |@® 10 o “lo @
5 (<] e ()] (@) (0] o -
=2
il a m’ entarté <START> he hit
N J
Y

48 Source sentence (input)

Decoder RNN
—M

S v
= oo>oo < &
0000 — =
n A
O N
= 0000 |c—— &
C A
Q =
Pard 0000)<—— <
o) A n/\\J
T
=
&= N
o s m ,..Dl... ._m
L
W E= 0000 |<—— S o
e [} A m =
Q 2 S
C eo00jc—— % (§
5 I
o o e000)<—— & |
Q / =
S 13 O< 0000)< =
o —— [N A S —
m uonnglaisip SaJ02S NNY
c UoIlUa1ly UOIlU21lY J9poduj
Q
=
(o}
(d})
(Vs &

Decoder RNN

—M
=
S «— X< 0000 j<—
\ﬁ N
o000 |—— ¢
N
0000)k—— =
cC A
o o
= 0000 |c—— &
c Q
Q o
urf 0000)k—— <
o) A n/\\J
©
=
o“ N) - "
W o = 2 5
£ o | 0000 |<—— = =
Q o 5§ A S =
(& M o v
C = 0000 |<—— - S
e N V. +—
= 3
o o e000)<—— & |
7 o
e .. 2
& e o e000)c—— = | V¥
o —— [N A S —
m uonnglaisip S9J03S NNY
c UoOIUa1lY UOIIU1Y Japodul
v
=
(o3
v
(7] A

Decoder RNN
—M

a

0000 |c—

pie
N

Ye
N

N
—>

with

0000 [c—

0000 |[c——

me

hit

0000 |[c——

0000 |[c—

0000 [c—

<START> he

0000 |<—

Attention
entarté

output

O 0000 |<—

Q@000 |<— o

!
ml
Y
Source sentence (input)

3
.
.
o,
o
*. v
[~ A AN

uolnNqIIISIP S9402S NNY
UOIIU21Y UOIUS1ly Japodu]

il

c
O
o
c
Q
o
I
(C
i o
iyt
Q
(@)
c
()
-
o
Q
?
O
..q.
Q
J
c
Q
-
(o n
()
(Vg

i
LN

Attention: in equations

 We have encoder hidden states h1,...,hxn € R"

e Ontimestep t, we have decoder hidden state s, € R"
: t :

 We get the attention scores € for this step:

e! =[s{hy,...,s{hy] € RY

* We take softmax to get the attention distribution o' for this step (this is a probability distribution and
sumsto 1)

o' = softmax(e’) € RY

- Weuse a'totakea weighted sum of the encoder hidden states to get the attention output a;
N
a; = Z Oézh@ = Rh
i=1

* Finally we concatenate the attention output a; with the decoder hidden
state St and proceed as in the non-attention seq2seq model

- la; st] € R2h

Attention is parallelizable, and solves bottleneck issues.

* Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

* We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.

 Number of unparallelizable operations does not increase with sequence length.
 Maximum interaction distance: O(1), since all words interact at every layer!

qgttention All words attend

to all words in

TLLLEL: ous |
attention previous layer,

most arrows here

N N
embedding ﬁ . are omitted
h, h,

hr

53

Attention is great!

\
W
Attention significantly improves NMT performance /

* It’s very useful to allow decoder to focus on certain parts of the source

Attention provides a more “human-like” model of the MT process

* You can look back at the source sentence while translating, rather than needing to remember it all
e Attention solves the bottleneck problem

* Attention allows decoder to look directly at source; bypass bottleneck

Attention helps with the vanishing gradient problem
* Provides shortcut to faraway states

Attention provides some interpretability

* By inspecting attention distribution, we see what the decoder was focusing on
* We get (soft) alignment for free!

il
* The network just learned alignment by itself H

hit

me
with
a
pie

a

©

54

— attention has quadratic cost with respect to sequence length)

m’

entarté

Attention is a general Deep Learning technique

We’'ve seen that attention is a great way to improve the sequence-to-sequence model
for Machine Translation.

However: You can use attention in many architectures
(not just seg2seq) and many tasks (not just MT)

More general definition of attention:

* Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.

57

We sometimes say that the query attends to the values.

For example, in the seq2seq + attention model, each decoder hidden state (query)
attends to all the encoder hidden states (values).

Attention is a general Deep Learning technique

 More general definition of attention:

* Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.

Intuition:

* The weighted sum is a selective summary of the information contained in the values,
where the query determines which values to focus on.

e Attention is a way to obtain a fixed-size representation of an arbitrary set of
representations (the values), dependent on some other representation (the query).

Upshot:

* Attention has become the powerful, flexible, general way pointer and memory

manipulation in all deep learning models. A new idea from after 2010! From NMT!
58

In summary

Lots of new information today! What are some of tha nrartical talrazwimue?

? . ® o [o] [e]. [¢]
L. A i ol—le—{e[|e
" : @D * @ @) Q@
é} g ® /_’é the movie was terribly exciting !
1. LSTMs are powerful 2. Use bidirectionality

when possible
Hiees

e

! : €5 —
H B 1 B B o o = - (3
i : B g H : B H : E B4
. 3 : i q i 3 3 @der T -
3 : 5 1 H : 2 3 g8 .
p p -
H : 0 . . - : - c
, : : : | : i i . 23 Il I
: ‘ ; : : : i : g2 T e
i i B
Feeding in last . -
llertcE0s> The protess esalted over the weekbrgd 5
- R E H E
B Z . .
S Z '1
c
&
Conditioning =
Bottleneck i a m entarté <START> he hit me with @
Source sentence (input)

3. Encoder-Decoder Neural Machine

Translation Systems work very well 4. Attention is a general,
59 useful technique

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: Recap
	Slide 4: Our starting point: vanishing gradients
	Slide 5: Long Short-Term Memory RNNs (LSTMs)
	Slide 6: Long Short-Term Memory RNNs (LSTMs)
	Slide 7: Long Short-Term Memory (LSTM)
	Slide 8: Long Short-Term Memory (LSTM)
	Slide 9: Long Short-Term Memory (LSTM)
	Slide 10: How does LSTM solve vanishing gradients?
	Slide 11: Is vanishing/exploding gradient just an RNN problem?
	Slide 12: Is vanishing/exploding gradient just a RNN problem?
	Slide 13: LSTMs: real-world success
	Slide 14: 4. Bidirectional and Multi-layer RNNs: motivation
	Slide 15: Bidirectional RNNs
	Slide 16: Bidirectional RNNs
	Slide 17: Bidirectional RNNs: simplified diagram
	Slide 18: Bidirectional RNNs
	Slide 19: Multi-layer RNNs
	Slide 20: Multi-layer RNNs
	Slide 21: Multi-layer RNNs in practice
	Slide 22: Machine Translation
	Slide 23: The early history of MT: 1950s
	Slide 24: The early history of MT: 1950s
	Slide 25: 1990s-2010s: Statistical Machine Translation
	Slide 26: 1990s–2010s: Statistical Machine Translation
	Slide 27
	Slide 28: NMT: the first big success story of NLP Deep Learning
	Slide 29: Neural Machine Translation (NMT)
	Slide 30: Sequence-to-sequence is versatile!
	Slide 31: Neural Machine Translation (NMT)
	Slide 32: Training a Neural Machine Translation system
	Slide 33: Multi-layer deep encoder-decoder machine translation net
	Slide 34: The final piece: the bottleneck problem in RNNs
	Slide 35: Issues with recurrent models: Linear interaction distance
	Slide 36: Issues with recurrent models: Lack of parallelizability
	Slide 37: Attention
	Slide 38: The starting point: mean-pooling for RNNs
	Slide 39: Attention is weighted averaging, which lets you do lookups!
	Slide 40: Sequence-to-sequence with attention
	Slide 41: Sequence-to-sequence with attention
	Slide 42: Sequence-to-sequence with attention
	Slide 43: Sequence-to-sequence with attention
	Slide 44: Sequence-to-sequence with attention
	Slide 45: Sequence-to-sequence with attention
	Slide 46: Sequence-to-sequence with attention
	Slide 47: Sequence-to-sequence with attention
	Slide 48: Sequence-to-sequence with attention
	Slide 49: Sequence-to-sequence with attention
	Slide 50: Sequence-to-sequence with attention
	Slide 51: Sequence-to-sequence with attention
	Slide 52: Attention: in equations
	Slide 53: Attention is parallelizable, and solves bottleneck issues.
	Slide 54: Attention is great!
	Slide 57: Attention is a general Deep Learning technique
	Slide 58: Attention is a general Deep Learning technique
	Slide 59: In summary

