
Introduction to NLP 
CSE5321/CSEG321

Lecture 10. Transformers 
Hwaran Lee (hwaranlee@sogang.ac.kr)

Materials are referenced from Stanford CS224n

mailto:hwaranlee@sogang.ac.kr


Lecture Plan
Lecture 11: Transformers 

1. From recurrence (RNN) to attention-based NLP models 

2. The Transformer model 

     
3. Great results with Transformers
4. Drawbacks and variants of Transformers



Do we even need recurrence at all? 
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• Abstractly: Attention is a way to pass information from a sequence (𝑥) to a neural 
network input. (ℎ𝑡)

• This is also exactly what RNNs are used for – to pass information!

• Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass 
information!

2014-2017ish 
Recurrence

Lots of trial 
and error

2021
??????



The building block we need: self attention
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• What we talked about – Cross attention: paying attention to the input x to generate 𝑦𝑡
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• What we need – Self attention: to generate 𝑦𝑡, we need to pay attention to 𝑦<𝑡



Self-Attention Hypothetical Example
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Self-Attention: keys, queries, values from the same sequence
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Let 𝒘1:𝑛 be a sequence of words in vocabulary 𝑉, like Zuko made his uncle tea.

For each 𝒘𝑖 , let 𝒙𝑖 = 𝐸𝒘𝒊, where 𝐸 ∈ ℝ𝑑×|𝑉| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ𝑑×𝑑

2. Compute pairwise similarities between keys and queries; normalize with softmax

𝒆𝑖𝑗 = 𝒒𝒊
⊤𝒌𝒋 𝜶𝑖𝑗 =

exp(𝒆𝑖𝑗)

σ𝑗′ exp(𝒆𝑖𝑗′)

3. Compute output for each word as weighted sum of values

𝒒𝑖 = 𝑄𝒙𝒊 (queries) 𝒌𝑖 = 𝐾𝒙𝒊 (keys) 𝒗𝑖 = 𝑉𝒙𝒊 (values)

𝒐𝑖 = ෍

𝒋

𝜶𝑖𝑗 𝒗𝑖



Barriers
• Doesn’t have an inherent 

notion of order! 

Barriers and solutions for Self-Attention as a building block

7

Solutions



Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the 
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝒑𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝒑𝑖 to our inputs!

• Recall that 𝒙𝑖 is the embedding of the word at index 𝑖. The positioned embedding is:

෥𝒙𝑖 = 𝒙𝑖 + 𝒑𝑖
In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…
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• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

•  Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids 

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2

/𝑑)

cos(𝑖/100002∗
𝑑
2

/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence
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[Shaw et al., 2018]

[Wang et al., 2019]

• Learned absolute position representations: Let all 𝑝𝑖 be learnable parameters!

Learn a matrix 𝒑 ∈ ℝ𝑑×𝑛, and let each 𝒑𝑖 be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

•  Cons:

• Definitely can’t extrapolate to indices outside 1, … , 𝑛.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


Common, modern position embeddings - RoPE
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High level thought process: a relative position embedding should be some 𝑓(𝑥, 𝑖) 
s.t. 

𝑓 𝑥, 𝑖 , 𝑓 𝑦, 𝑗 = 𝑔(𝑥, 𝑦, 𝑖 − 𝑗)

That is, the attention function only gets to depend on the relative position (i-j). How 
do existing embeddings not fulfill this goal?

•Sine: Has various cross-terms that are not relative

• Absolute: 

is not an inner product



RoPE – Embedding via rotation
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RoPE – From 2 to many dimensions

13

Just pair up the coordinates and rotate them in 2d (motivation: complex numbers)

[Su et al 2021]



Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning! It’s all just weighted 
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

14



Adding nonlinearities in self-attention

• Note that there are no elementwise 
nonlinearities in self-attention; 
stacking more self-attention layers 
just re-averages value vectors
(Why? Look at the notes!)

• Easy fix: add a feed-forward network 
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖  

    =  𝑊2 ∗ ReLU 𝑊1 output𝑖 + 𝑏1 + 𝑏2

The

𝑤1 𝑤2

chef

𝑤3

who

𝑤𝑛

food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.
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Masking the future in self-attention

• To use self-attention in 
decoders, we need to ensure 
we can’t peek at the future.

• At every timestep, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

The

chef

who

[START]

For encoding 
these words

We can look at these 
(not greyed out) words

𝑒𝑖𝑗 = ൝
𝑞𝑖

⊤𝑘𝑗 , 𝑗 ≤ 𝑖

−∞, 𝑗 > 𝑖

−∞

−∞−∞

−∞−∞ −∞
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.

• Mask out the future by artificially 
setting attention weights to 0!

18



• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention 
is an unordered function of its inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-
forward network.

• Masking:

• In order to parallelize operations while not 
looking at the future.

• Keeps information about the future from 
“leaking” to the past.

Necessities for a self-attention building block:

19



Outline

1. From recurrence (RNN) to attention-based NLP models

2. The Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers
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The Transformer Decoder

21

• A Transformer decoder is how 
we’ll build systems like 
language models.

• It’s a lot like our minimal self-
attention architecture, but 
with a few more components.

• The embeddings and position 
embeddings are identical.

• We’ll next replace our self-
attention with multi-head self-
attention.

Transformer Decoder



Recall the Self-Attention Hypothetical Example

22



Hypothetical Example of Multi-Head Attention
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Sequence-Stacked form of Attention

• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑛 ∈ ℝ𝑛×𝑑 be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑛×𝑑, 𝑋𝑄 ∈ ℝ𝑛×𝑑, 𝑋𝑉 ∈ ℝ𝑛×𝑑.

• The output is defined as output =  softmax 𝑋𝑄 𝑋𝐾 ⊤ 𝑋𝑉 ∈∈ ℝ𝑛×𝑑.

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

All pairs of 
attention scores!

output ∈ ℝ𝑛×𝑑

=

𝐾⊤ 𝑋⊤

𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

𝑋𝑄𝐾⊤ 𝑋⊤softmax 𝑋𝑉

24



Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗 is high, but maybe we want 

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads, and ℓ ranges 
from 1 to ℎ.

• Each attention head performs attention independently:

• outputℓ =  softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where  outputℓ ∈ ℝ𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = output1; … ; outputℎ 𝑌, where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors 
differently.25



Multi-head self-attention is computationally efficient

• Even though we compute ℎ many attention heads, it’s not really more costly.

• We compute 𝑋𝑄 ∈ ℝ𝑛×𝑑, and then reshape to ℝ𝑛×ℎ×𝑑/ℎ. (Likewise for 𝑋𝐾, 𝑋𝑉.)  

• Then we transpose to ℝℎ×𝑛×𝑑/ℎ; now the head axis is like a batch axis.

• Almost everything else is identical, and the matrices are the same sizes.

26

𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

𝐾⊤ 𝑋⊤

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

softmax 𝑋𝑉𝑋𝑄𝐾⊤ 𝑋⊤ 𝑋𝑉

output ∈ ℝ𝑛×𝑑

=
𝑃

=

mix

∈ ℝ3×𝑛×𝑛

3 sets of all pairs of 
attention scores!𝑋𝑄𝐾⊤ 𝑋⊤=



Scaled Dot Product [Vaswani et al., 2017]

• “Scaled Dot Product” attention aids in training.

• When dimensionality 𝑑 becomes large, dot products between vectors tend to 
become large.

• Because of this, inputs to the softmax function can be large, making the 
gradients small.

• Instead of the self-attention function we’ve seen:

outputℓ =  softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ 

• We divide the attention scores by 𝑑/ℎ, to stop the scores from becoming large 
just as a function of 𝑑/ℎ (The dimensionality divided by the number of heads.)

outputℓ =  softmax
𝑋𝑄ℓ𝐾ℓ

⊤𝑋⊤

𝑑/ℎ
∗ 𝑋𝑉ℓ 
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The Transformer Decoder

28

• Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two 
optimization tricks that end up 
being :

• Residual Connections

• Layer Normalization

• In most Transformer diagrams, 
these are often written 
together as “Add & Norm”

Transformer Decoder



The Transformer Encoder: Residual connections [He et al., 2016]

• Residual connections are a trick to help models train better.

• Instead of 𝑋(𝑖) = Layer(𝑋 𝑖−1 ) (where 𝑖 represents the layer)

• We let 𝑋(𝑖) = 𝑋(𝑖−1) +  Layer(𝑋 𝑖−1 ) (so we only have to learn “the residual” 
from the previous layer)

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

𝑋(𝑖−1)
Layer 𝑋(𝑖)

𝑋(𝑖−1)
Layer 𝑋(𝑖)+

[no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet]29

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf


The Transformer Encoder: Layer normalization  [Ba et al., 2016]

Xu et al., 2019

• Layer normalization is a trick to help models train faster.

• Idea: cut down on uninformative variation in hidden vector values by normalizing 
to unit mean and standard deviation within each layer.

• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let 𝑥 ∈ ℝ𝑑 be an individual (word) vector in the model.

• Let 𝜇 = σ𝑗=1
𝑑 𝑥𝑗; this is the mean; 𝜇 ∈ ℝ.

• Let 𝜎 =
1

𝑑
σ𝑗=1

𝑑 𝑥𝑗 − 𝜇
2

; this is the standard deviation; 𝜎 ∈ ℝ.

• Let 𝛾 ∈ ℝ𝑑 and 𝛽 ∈ ℝ𝑑 be learned “gain” and “bias” parameters. (Can omit!)

• Then layer normalization computes:

output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽

Normalize by scalar 
mean and variance

Modulate by learned 
elementwise gain and bias

30

https://arxiv.org/abs/1607.06450
https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf


The Transformer Decoder

31

• The Transformer Decoder is a 
stack of Transformer Decoder 
Blocks.

• Each Block consists of:

• Self-attention

• Add & Norm

• Feed-Forward

• Add & Norm

• That’s it! We’ve gone through 
the Transformer Decoder.

Transformer Decoder



The Transformer Encoder

32

• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
models.

• What if we want bidirectional 
context, like in a bidirectional 
RNN?

• This is the Transformer 
Encoder. The only difference is 
that we remove the masking 
in the self-attention.

Transformer DecoderNo Masking!



The Transformer Encoder-Decoder

33

• Recall that in machine 
translation, we processed the 
source sentence with a 
bidirectional model and 
generated the target with a 
unidirectional model.

• For this kind of seq2seq 
format, we often use a 
Transformer Encoder-Decoder.

• We use a normal Transformer 
Encoder.

• Our Transformer Decoder is 
modified to perform cross-
attention to the output of the 
Encoder.



Cross-attention (details)

• We saw that self-attention is when keys, 
queries, and values come from the same 
source.

• In the decoder, we have attention that 
looks more like what we saw last week.

• Let ℎ1, … , ℎ𝑛 be output vectors from the 
Transformer encoder;  𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑛 be input vectors from the 
Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the 
encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the 
decoder, 𝑞𝑖 = 𝑄𝑧𝑖.

34

ℎ1, … , ℎ𝑛

𝑧1, … , 𝑧𝑛 



Cross-attention (details)

• Let’s look at how cross-attention is computed, in matrices.

• Let H = ℎ1; … ; ℎ𝑇 ∈ ℝ𝑇×𝑑 be the concatenation of encoder vectors.

• Let Z = 𝑧1; … ; 𝑧𝑇 ∈ ℝ𝑇×𝑑 be the concatenation of decoder vectors.

• The output is defined as output =  softmax 𝑍𝑄 𝐻𝐾 ⊤ × 𝐻𝑉.

= 𝑍𝑄𝐾⊤ 𝐻⊤

∈ ℝ𝑇×𝑇

All pairs of 
attention scores!

output ∈ ℝ𝑇×𝑑

=

𝐾⊤ 𝐻⊤

𝑍𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑍𝑄 𝐻𝐾 ⊤

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

𝑍𝑄𝐾⊤ 𝐻⊤softmax 𝐻𝑉

35
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