Introduction to NLP

CSES5321/CSEG321

Lecture 10. Transformers
Hwaran Lee (hwaranlee@sogang.ac.kr)

Materials are referenced from Stanford CS224n

mailto:hwaranlee@sogang.ac.kr

Lecture Plan

Lecture 11: Transformers
1. From recurrence (RNN) to attention-based NLP models

2. The Transformer model

Do we even need recurrence at all?

e Abstractly: Attention is a way to pass information from a sequence (x) to a neural
network input. (h;)

* This is also exactly what RNNs are used for —to pass information!

* Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass

information!
"I"I"Im‘ﬁ? Lots of trial - .
fofdelld M anderor
2014-2017ish 2021
Recurrence 290?97

I 3

The building block we need: self attention

* What we talked about — Cross attention: paying attention to the input x to generate y;

* What we need — Self attention: to generate y;, we need to pay attention to y_;

Self-Attention Hypothetical Example

attention
weights
for
I "learned”
. I .

went to Stanford CS 224n and learned
5

Self-Attention: keys, queries, values from the same sequence

Let w4.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w; , let x; = Ew;, where E € RVl is an embedding matrix.
1. Transform each word embedding with weight matrices Q, K,V , each in Raxd
= Qx; ke; = Kx; (keys) v; = Vx; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

exp(e;;)
er eXp(eij’)

_ T
eij = q; k;j

j @ij =

3. Compute output for each word as weighted sum of values

0; = Zaijvi
6

J

Barriers and solutions for Self-Attention as a building block

Barriers Solutions

e Doesn’t have an inherent
notion of order!

Fixing the first self-attention problem: sequence order

e Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

* Consider representing each sequence index as a vector

p; € RY, for i € {1,2, ...,n} are position vectors

* Don’t worry about what the p; are made of yet!
» Easy to incorporate this info into our self-attention block: just add the p; to our inputs!
* Recall that x; is the embedding of the word at index i. The positioned embedding is:

—~ In deep self-attention

Xi = Xj + Di networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add...

Position representation vectors through sinusoids

* Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

/sin(i/100002*1/d)\ ’fﬁjfﬁy_ﬁi

cos(i/10000%*1/%)
Di :

Sln(l/100002*;)
 cos(i/10000%°2/%))

Dhnenﬂon

Index in the sequence

* Pros:
 Periodicity indicates that maybe “absolute position” isn’t as important
* Maybe can extrapolate to longer sequences as periods restart!
 Cons:
* Not learnable; also the extrapolation doesn’t really work!

9 Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Position representation vectors learned from scratch

Learned absolute position representations: Let all p; be learnable parameters!
Learn a matrix p € R**™, and let each p; be a column of that matrix!

Pros:

* Flexibility: each position gets to be learned to fit the data
e Cons:
* Definitely can’t extrapolate to indices outside 1, ..., n.

Most systems use this!

Sometimes people try more flexible representations of position:
 Relative linear position attention [Shaw et al., 2018]

* Dependency syntax-based position [Wang et al., 2019]

10

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Common, modern position embeddings - ROPE

High level thought process: a relative position embedding should be some f (x, i)
S.t.

(f(x,0), f,) =g(x,y,i =)

That is, the attention function only gets to depend on the relative position (i-j). How
do existing embeddings not fulfill this goal?

*Sine: Has various cross-terms that are not relative

 Absolute:

;W (o, WE + a;y)’

€5 = \/d_
Z
I 11

is not an inner product

RoPE — Embedding via rotation

How can we solve this problem?
« We want our embeddings to be invariant to absolute position
We know that inner products are invariant to arbitrary rotation.

we we
know
know we kNnow
L
Position independent Embedding) Embedding)
embedding “of course we know” we know that

Rotate by ‘2 positions’ Rotate by ‘0 positions’

12

RoPE — From 2 to many dimensions

r """""""""""""""""""""""""""""""""" 1
m 1
i X']
tant 2
: ' V\ :
1 1
: X =
: (Xl XZ) ﬁ : (Xllp xlz) :
: o ¢ X 1 X]- Position Encoded Query / Ke :
| 1
1 1
e 2 N z :
N\ /
Enhanced T «-- T T L] W | O R M R
Transformer [T -+« T TR 2 [P I P R R s
with [-« (T 100 3 —_— 0 0 L L T W
Rotary [T 1] -+ (I I0IE a I o R W o
Positon [T T T 1+-- [T 1] LI - LT
Embedding [T T []+« [] []T] 6 M .o u
Query / Key Position Position Encoded Query / Key (Su et al 2021]
u

Just pair up the coordinates and rotate them in 2d (motivation: complex numbers)

13

Barriers and solutions for Self-Attention as a building block

Barriers Solutions
 Doesn’t have an inherent _* Add position representations to
notion of order! the inputs

* No nonlinearities for deep
learning! It’s all just weighted
averages

Adding nonlinearities in self-attention

* Note that there are no elementwise

nonlinearities in self-attention; I]]]
stacking more self-attention layers FF FF FF FF
just re-averages value vectors T ! ! 1

(Why? Look at the notes!)

* Easy fix: add a feed-forward network FTF FTF FTF FTF
to post-process each output vector. f ! f !
self-attention
m; = MLP(output;) coe
= W, = ReLU(W; output; + b;) + b, Wy % W3 Wn
The chef who food

I . Intuition: the FF network processes the result of attention

Barriers and solutions for Self-Attention as a building block

Barriers Solutions
 Doesn’t have an inherent _* Add position representations to
notion of order! the inputs
* No nonlinearities for deep * Easy fix: apply the same
learning magic! It’s all just - feedforward network to each self-
weighted averages attention output.

* Need to ensure we don’t
“look at the future” when >
predicting a sequence

 Like in machine translation
* Or language modeling

16

Masking the future in self-attention

We can look at these
(not greyed out) words

* To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

_ [START]
* At every timestep, we could
change the set of keys and ’
queries to include only past The
words. (Inefficient!) For encoding
these words
o _J chef
 To enable parallelization, we
mask out attention to future
words by setting attention who
scores to —oo. q; ki, j < i
el-j =

—00,] > 1
17

Barriers and solutions for Self-Attention as a building block

18

Barriers

Doesn’t have an inherent
notion of order!

No nonlinearities for deep
learning magic! It’s all just
weighted averages

Need to ensure we don’t
“look at the future” when
predicting a sequence

 Like in machine translation
* Or language modeling

Solutions

Add position representations to
the inputs

Easy fix: apply the same
feedforward network to each self-
attention output.

Mask out the future by artificially
setting attention weights to 0!

Necessities for a self-attention building block:

* Self-attention: Probabilities
 the basis of the method. Softmax
. : AN
* Position representations: Linear
 Specify the sequence order, since self-attention =
is an unordered function of its inputs. é g Feed-Forward
* Nonlinearities: =E- 1
* At the output of the self-attention block S § Masked Self-
* Frequently implemented as a simple feed- 5 c Attention
forward network. § ‘o w
Block
e Masking:
. . : Add Position
* In order to parallelize operations while not Embeddings
looking at the future. ™
, , Embeddings
* Keeps information about the future from Lot
nputs

19 “leaking” to the past.

Outline

The Transformer model

s e

The Transformer Decoder

21

A Transformer decoder is how
we’ll build systems like
language models.

It’s a lot like our minimal self-
attention architecture, but
with a few more components.

The embeddings and position
embeddings are identical.

We’'ll next replace our self-
attention with multi-head self-
attention.

Masked Multi-
Head Attention

Add Position
Embeddings

Embeddings

Transformer Decoder

Recall the Self-Attention Hypothetical Example

attention
weights
for
I "learned”
. I .

went to Stanford CS 224n and learned
22

Hypothetical Example of Multi-Head Attention

I 23

Attention head 1
attends to entities

VvV V Vv \"4
k k k Kk
I went to Stanford
I went

Vv
k

CS

Y
Kk

224n

to

9
\" \%
K k
and learned
Stanford

Attention head 2 attends to
syntactically relevant words

q

V V. V V VvV VvV V V
k k 'k k Kk k k Kk

I went to Stanford CS 224n and learned

CS 224n and learned

Sequence-Stacked form of Attention

* Let’s look at how key-query-value attention is computed, in matrices.
* Let X = [xq;...; x,, | € R™4 be the concatenation of input vectors.
« First, note that XK € R™*¢, XQ € R™4¢, XV € R™*¢,
* The output is defined as output = softmax(XQ(XK))XV €€ R™ <.

First, take the query-key dot All pairs of
products in one matrix X0 = XQKTXT attention scores!
multiplication: XQ(XK) T KT xT e RIXT

Next, softmax, and ()

compute the weighted softmax| XQKTXT | xv
average with another

matrix multiplication. \ /

output € R™*¢

24

Multi-headed attention

25

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xl-TQTKxj is high, but maybe we want
to focus on different j for different reasons?

We’'ll define multiple attention “heads” through multiple Q,K,V matrices

d
Let, Qp, Ky, Vy € Rdxﬁ, where h is the number of attention heads, and € ranges
from 1 to h.

Each attention head performs attention independently:
» output, = softmax(XQ,K,; XT) * XV,, where output, € R%/"
Then the outputs of all the heads are combined!

« output = [outputy; ...; outputy]Y, where Y € R4*¢

Each head gets to “look” at different things, and construct value vectors
differently.

Multi-head self-attention is computationally efficient

* Even though we compute h many attention heads, it’s not really more costly.
« We compute XQ € R™4, and then reshape to R/ (Likewise for XK, XV .)
* Then we transpose to RP™<d/1. now the head axis is like a batch axis.
* Almost everything else is identical, and the matrices are the same sizes.

First, take the query-key dot 3 sets of all pairs of

products in one matrix X0 — XQKTXT attention scores!

multiplication: XQ(XK) T KT xT c R3XNXN

Next, softmax, and ()

compute the weighted softmax| X0KTXxT | xy = —

average with another p d
output € R

matrix multiplication. \ / .
26 mix

Scaled Dot Product [Vaswani et al., 2017]

27

“Scaled Dot Product” attention aids in training.

When dimensionality d becomes large, dot products between vectors tend to
become large.

* Because of this, inputs to the softmax function can be large, making the
gradients small.

Instead of the self-attention function we’ve seen:

output, = softmax(XQ.K; XT) x XV,
We divide the attention scores by /d/h, to stop the scores from becoming large
just as a function of d/h (The dimensionality divided by the number of heads.)

. XQK; XT)
output, = softrnax(Ja/n * XV

The Transformer Decoder

Add & Norm
 Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
optimization tricks that end up Add & Norm
Masked Multi-

being :
* Residual Connections |

Head Attention

* Layer Normalization

* |n most Transformer diagrames, Add Position
these are often written Embeddings
together as “Add & Norm ST —

Transformer Decoder

28

The Transformer Encoder: Residual connections [He et al., 2016]

* Residual connections are a trick to help models train better.

» Instead of X = Layer(X“~V) (where i represents the layer)

xG-1 x®

Layer

c Welet X® = x(=1D 4 Layer(X(i‘l)) (so we only have to learn “the residual”
from the previous layer)

XU — Layer ?—' x®

* Gradient is great through the residual
connection; it’s 1!

» Bias towards the identity function! [no residuals] [residuals]
I 29

[Loss landscape visualization,
Li et al., 2018, on a ResNet]

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

The Transformer Encoder: Layer normalization [Ba et al., 2016]

e Layer normalization is a trick to help models train faster.

e |dea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

« Let x € R? be an individual (word) vector in the model.

e letu = Zji:lxj; this is the mean; u € R.

2
* Leto = \/2 Zj-l:l(xj — p)"; this is the standard deviation; o € R.

« Lety € R%and 8 € R? be learned “gain” and “bias” parameters. (Can omit!)
 Then layer normalization computes:

out X — U
output = *xy +
Vo +e

Normalize by scalar / '\ Modulate by learned

mean and variance elementwise gain and bias

30

https://arxiv.org/abs/1607.06450
https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

The Transformer Decoder

31

The Transformer Decoder is a

stack of Transformer Decoder
Blocks.

Each Block consists of:
* Self-attention
 Add & Norm
* Feed-Forward
 Add & Norm

That’s it! We’'ve gone through
the Transformer Decoder.

Repeat for number

of encoder blocks

Probabilities

Softmax
N
Linear
AN

Add & Norm
N

Feed-Forward

/I\

ﬁ

Add & Norm
AN
Masked Multi-

Head Attention

w Block

Add Position
Embeddings

T

Embeddings

Decoder Inputs

The Transformer Encoder Probabilities

32

Softmax
N
The Transformer Decoder e
constrains to unidirectional N
context, as for language Add & Norm
models. N T
_ . . 22 Feed-Forward
What if we want bidirectional = = A
. . . q. . 2 A
context, like in a bidirectional c 2 |
o2 Add & Norm
RNN? 23 ﬁ X
This is the Transformer o & MUt
)) & Attention
Encoder. The only difference is v ©

that we remove the masking (w Block

in the self-attention. |
Add Position

Embeddings

No Masking! T

Embeddings

Decoder Inputs

Probabilities

The Transformer Encoder-Decoder softmasx
Linear
e Recall that in machine 4
. Add & Norm
translation, we processed the N
source sentence with a Feed-Forward
bidirectional model and T
. Add & Norm
generated the target with a Add & Norm A
idirectional model * Haead
uni ' Feed-Forward b ECTIEER)
* For this kind of seq2seq A J
format, we often use a Add & Norm Add & Norm
Transformer Encoder-Decoder. e i Masked Multi-

. Head Attention
 We use a hormal Transformer ST ol

Encoder. w o w Block

e Qur Transformer Decoder is | Add Position

o Add Position Embeddings
modified to perform cross- Embeltl:l\dings 9

attention to the output of the

Embeddings ETIECENIE

33 Encoder. Encoder Inputs Decoder Inputs

Cross-attention (details)

34

We saw that self-attention is when keys,
qgueries, and values come from the same
source.

In the decoder, we have attention that
looks more like what we saw last week.

Add & Norm
Add & Norm A
Let h4, ..., h,, be output vectors from the N I*’LUIU-H.eod
ttention
Transformer encoder; x; € R R
. T (Zl, EER , Zn
Let z4, ..., z,, be input vectors from the dd & Norm Add & Norm
N
Transformer decoder, z; € R? T Masked Multi-
. Head Attention
Then keys and values are drawn from the Attention w
encoder (like a memory): w — | Block
| .
° ki — Khi; Vi = Vhl Add Position ekl [PEElten
. Embeddings Embeddings
And the queries are drawn from the ,
Embeddings

dECOder, q; = QZi' Embeddings

Encoder Inputs Decoder Inputs

Cross-attention (details)

e Let’s look at how cross-attention is computed, in matrices.
e Let H = [hy; ...; hy] € RT*4 be the concatenation of encoder vectors.

« LetZ = [zq; ...; 21 | € RT*? be the concatenation of decoder vectors.
» The output is defined as output = softmax(ZQ(HK) ") x HV.

First, take the query-key dot All pairs of
products in one matrix 70 = ZOKTHT attention scores!
multiplication: ZQ(HK)T KT HT T
eER
e

Next, softmax, and

compute the weighted softmax| zZoKTHT | gy
average with another

matrix multiplication. \ /

output € RT*¢

35

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: Do we even need recurrence at all?
	Slide 4: The building block we need: self attention
	Slide 5: Self-Attention Hypothetical Example
	Slide 6: Self-Attention: keys, queries, values from the same sequence
	Slide 7: Barriers and solutions for Self-Attention as a building block
	Slide 8: Fixing the first self-attention problem: sequence order
	Slide 9: Position representation vectors through sinusoids
	Slide 10: Position representation vectors learned from scratch
	Slide 11: Common, modern position embeddings - RoPE
	Slide 12: RoPE – Embedding via rotation
	Slide 13: RoPE – From 2 to many dimensions
	Slide 14: Barriers and solutions for Self-Attention as a building block
	Slide 15: Adding nonlinearities in self-attention
	Slide 16: Barriers and solutions for Self-Attention as a building block
	Slide 17: Masking the future in self-attention
	Slide 18: Barriers and solutions for Self-Attention as a building block
	Slide 19: Necessities for a self-attention building block:
	Slide 20: Outline
	Slide 21: The Transformer Decoder
	Slide 22: Recall the Self-Attention Hypothetical Example
	Slide 23: Hypothetical Example of Multi-Head Attention
	Slide 24: Sequence-Stacked form of Attention
	Slide 25: Multi-headed attention
	Slide 26: Multi-head self-attention is computationally efficient
	Slide 27: Scaled Dot Product [Vaswani et al., 2017]
	Slide 28: The Transformer Decoder
	Slide 29: The Transformer Encoder: Residual connections [He et al., 2016]
	Slide 30: The Transformer Encoder: Layer normalization [Ba et al., 2016]
	Slide 31: The Transformer Decoder
	Slide 32: The Transformer Encoder
	Slide 33: The Transformer Encoder-Decoder
	Slide 34: Cross-attention (details)
	Slide 35: Cross-attention (details)
	Slide 36: Outline
	Slide 37: Great Results with Transformers
	Slide 38: Great Results with Transformers
	Slide 39: Great Results with Transformers
	Slide 40: Outline
	Slide 41: What would we like to fix about the Transformer?
	Slide 42: Pre vs Post norm
	Slide 43: Quadratic computation as a function of sequence length
	Slide 44: Back to the future – RNNs are back!
	Slide 46: Do we even need to remove the quadratic cost of attention?
	Slide 47: Do Transformer Modifications Transfer?
	Slide 48: Parting remarks

