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Lecture Plan

Lecture 11: Transformers
1. From recurrence (RNN) to attention-based NLP models

2. The Transformer model



Do we even need recurrence at all?

e Abstractly: Attention is a way to pass information from a sequence (x) to a neural
network input. (h;)

* This is also exactly what RNNs are used for —to pass information!

* Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass

information!
"I"I"Im‘ﬁ? Lots of trial - .
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2014-2017ish 2021
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The building block we need: self attention

* What we talked about — Cross attention: paying attention to the input x to generate y;

* What we need — Self attention: to generate y;, we need to pay attention to y_;




Self-Attention Hypothetical Example

attention
weights
for
I "learned”
. I .

went to Stanford CS 224n and learned
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Self-Attention: keys, queries, values from the same sequence

Let w4.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w; , let x; = Ew;, where E € RVl is an embedding matrix.
1. Transform each word embedding with weight matrices Q, K,V , each in Raxd
= Qx; ke; = Kx; (keys) v; = Vx; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

exp(e;;)
er eXp(eij’)

_ T
eij = q; k;j

j @ij =

3. Compute output for each word as weighted sum of values

0; = Zaijvi
6
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Barriers and solutions for Self-Attention as a building block

Barriers Solutions

e Doesn’t have an inherent
notion of order!




Fixing the first self-attention problem: sequence order

e Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

* Consider representing each sequence index as a vector

p; € RY, for i € {1,2, ...,n} are position vectors

* Don’t worry about what the p; are made of yet!
» Easy to incorporate this info into our self-attention block: just add the p; to our inputs!
* Recall that x; is the embedding of the word at index i. The positioned embedding is:

—~ In deep self-attention

Xi = Xj + Di networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add...




Position representation vectors through sinusoids

* Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

/sin(i/100002*1/d)\ ’fﬁjfﬁy_ﬁi

cos(i/10000%*1/%)
Di :

Sln(l/100002*; )
 cos(i/10000%°2/%) )

Dhnenﬂon

Index in the sequence

* Pros:
 Periodicity indicates that maybe “absolute position” isn’t as important
* Maybe can extrapolate to longer sequences as periods restart!
 Cons:
* Not learnable; also the extrapolation doesn’t really work!

9 Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/




Position representation vectors learned from scratch

Learned absolute position representations: Let all p; be learnable parameters!
Learn a matrix p € R**™, and let each p; be a column of that matrix!

Pros:

* Flexibility: each position gets to be learned to fit the data
e Cons:
* Definitely can’t extrapolate to indices outside 1, ..., n.

Most systems use this!

Sometimes people try more flexible representations of position:
 Relative linear position attention [Shaw et al., 2018]

* Dependency syntax-based position [Wang et al., 2019]
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Common, modern position embeddings - ROPE

High level thought process: a relative position embedding should be some f (x, i)
S.t.

(f(x,0), f, ) =g(x,y,i =)

That is, the attention function only gets to depend on the relative position (i-j). How
do existing embeddings not fulfill this goal?

*Sine: Has various cross-terms that are not relative

 Absolute:

;W (o, WE + a;y)’

€5 = \/d_
Z
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is not an inner product




RoPE — Embedding via rotation

How can we solve this problem?
« We want our embeddings to be invariant to absolute position
We know that inner products are invariant to arbitrary rotation.

we we
know
know we kNnow
L
Position independent Embedding ) Embedding )
embedding “of course we know” we know that

Rotate by ‘2 positions’ Rotate by ‘0 positions’
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RoPE — From 2 to many dimensions
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u

Just pair up the coordinates and rotate them in 2d (motivation: complex numbers)
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Barriers and solutions for Self-Attention as a building block

Barriers Solutions
 Doesn’t have an inherent _* Add position representations to
notion of order! the inputs

* No nonlinearities for deep
learning! It’s all just weighted
averages




Adding nonlinearities in self-attention

* Note that there are no elementwise

nonlinearities in self-attention; I ] ] ]
stacking more self-attention layers FF FF FF FF
just re-averages value vectors T ! ! 1

(Why? Look at the notes!)

* Easy fix: add a feed-forward network FTF FTF FTF FTF
to post-process each output vector. f ! f !
self-attention
m; = MLP(output;) coe
= W, = ReLU(W; output; + b;) + b, Wy % W3 Wn
The chef who food

I . Intuition: the FF network processes the result of attention




Barriers and solutions for Self-Attention as a building block

Barriers Solutions
 Doesn’t have an inherent _* Add position representations to
notion of order! the inputs
* No nonlinearities for deep * Easy fix: apply the same
learning magic! It’s all just - feedforward network to each self-
weighted averages attention output.

* Need to ensure we don’t
“look at the future” when >
predicting a sequence

 Like in machine translation
* Or language modeling
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Masking the future in self-attention

We can look at these
(not greyed out) words

* To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

_ [START]
* At every timestep, we could
change the set of keys and ’
queries to include only past The
words. (Inefficient!) For encoding
these words
o _J chef
 To enable parallelization, we
mask out attention to future
words by setting attention who
scores to —oo. q; ki, j < i
el-j =

—00,] > 1
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Barriers and solutions for Self-Attention as a building block
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Barriers

Doesn’t have an inherent
notion of order!

No nonlinearities for deep
learning magic! It’s all just
weighted averages

Need to ensure we don’t
“look at the future” when
predicting a sequence

 Like in machine translation
* Or language modeling

Solutions

Add position representations to
the inputs

Easy fix: apply the same
feedforward network to each self-
attention output.

Mask out the future by artificially
setting attention weights to 0!




Necessities for a self-attention building block:

* Self-attention: Probabilities
 the basis of the method. Softmax
. : AN
* Position representations: Linear
 Specify the sequence order, since self-attention =
is an unordered function of its inputs. é g Feed-Forward
* Nonlinearities: =E- 1
* At the output of the self-attention block S § Masked Self-
* Frequently implemented as a simple feed- 5 c Attention
forward network. § ‘o w
Block
e Masking:
. . : Add Position
* In order to parallelize operations while not Embeddings
looking at the future. ™
, , Embeddings
* Keeps information about the future from Lot
nputs

19 “leaking” to the past.




Outline

The Transformer model

s e




The Transformer Decoder
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A Transformer decoder is how
we’ll build systems like
language models.

It’s a lot like our minimal self-
attention architecture, but
with a few more components.

The embeddings and position
embeddings are identical.

We’'ll next replace our self-
attention with multi-head self-
attention.

Masked Multi-
Head Attention

Add Position
Embeddings

Embeddings

Transformer Decoder




Recall the Self-Attention Hypothetical Example

attention
weights
for
I "learned”
. I .

went to Stanford CS 224n and learned
22




Hypothetical Example of Multi-Head Attention
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Attention head 1
attends to entities

VvV V Vv \"4
k k k Kk
I went to Stanford
I went

Vv
k

CS

Y
Kk

224n

to

9
\" \%
K k
and learned
Stanford

Attention head 2 attends to
syntactically relevant words

q

V V. V V VvV VvV V V
k k 'k k Kk k k Kk

I went to Stanford CS 224n and learned

CS 224n and learned




Sequence-Stacked form of Attention

* Let’s look at how key-query-value attention is computed, in matrices.
* Let X = [xq;...; x,, | € R™4 be the concatenation of input vectors.
« First, note that XK € R™*¢, XQ € R™4¢, XV € R™*¢,
* The output is defined as output = softmax(XQ(XK) )XV €€ R™ <.

First, take the query-key dot All pairs of
products in one matrix X0 = XQKTXT attention scores!
multiplication: XQ(XK) T KT xT e RIXT

Next, softmax, and ( )

compute the weighted softmax| XQKTXT | xv
average with another

matrix multiplication. \ /

output € R™*¢

24




Multi-headed attention
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What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xl-TQTKxj is high, but maybe we want
to focus on different j for different reasons?

We’'ll define multiple attention “heads” through multiple Q,K,V matrices

d
Let, Qp, Ky, Vy € Rdxﬁ, where h is the number of attention heads, and € ranges
from 1 to h.

Each attention head performs attention independently:
» output, = softmax(XQ,K,; XT) * XV,, where output, € R%/"
Then the outputs of all the heads are combined!

« output = [outputy; ...; outputy]Y, where Y € R4*¢

Each head gets to “look” at different things, and construct value vectors
differently.




Multi-head self-attention is computationally efficient

* Even though we compute h many attention heads, it’s not really more costly.
« We compute XQ € R™4, and then reshape to R/ (Likewise for XK, XV .)
* Then we transpose to RP™<d/1. now the head axis is like a batch axis.
* Almost everything else is identical, and the matrices are the same sizes.

First, take the query-key dot 3 sets of all pairs of

products in one matrix X0 — XQKTXT attention scores!

multiplication: XQ(XK) T KT xT c R3XNXN

Next, softmax, and ( )

compute the weighted softmax| X0KTXxT | xy = —

average with another p d
output € R

matrix multiplication. \ / .
26 mix




Scaled Dot Product [Vaswani et al., 2017]
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“Scaled Dot Product” attention aids in training.

When dimensionality d becomes large, dot products between vectors tend to
become large.

* Because of this, inputs to the softmax function can be large, making the
gradients small.

Instead of the self-attention function we’ve seen:

output, = softmax(XQ.K; XT) x XV,
We divide the attention scores by /d/h, to stop the scores from becoming large
just as a function of d/h (The dimensionality divided by the number of heads.)

. XQK; XT)
output, = softrnax( Ja/n * XV




The Transformer Decoder

Add & Norm
 Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
optimization tricks that end up Add & Norm
Masked Multi-

being :
* Residual Connections |

Head Attention

* Layer Normalization

* |n most Transformer diagrames, Add Position
these are often written Embeddings
together as “Add & Norm ST —

Transformer Decoder

28




The Transformer Encoder: Residual connections [He et al., 2016]

* Residual connections are a trick to help models train better.

» Instead of X = Layer(X“~V) (where i represents the layer)

xG-1 x®

Layer

c Welet X® = x(=1D 4 Layer(X(i‘l)) (so we only have to learn “the residual”
from the previous layer)

XU — Layer ?—' x®

* Gradient is great through the residual
connection; it’s 1!

» Bias towards the identity function! [no residuals] [residuals]
I 29

[Loss landscape visualization,
Li et al., 2018, on a ResNet]



https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

The Transformer Encoder: Layer normalization [Ba et al., 2016]

e Layer normalization is a trick to help models train faster.

e |dea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

« Let x € R? be an individual (word) vector in the model.

e letu = Zji:lxj; this is the mean; u € R.

2
* Leto = \/2 Zj-l:l(xj — p)"; this is the standard deviation; o € R.

« Lety € R%and 8 € R? be learned “gain” and “bias” parameters. (Can omit!)
 Then layer normalization computes:

out X — U
output = *xy +
Vo +e

Normalize by scalar / '\ Modulate by learned

mean and variance elementwise gain and bias
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https://arxiv.org/abs/1607.06450
https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

The Transformer Decoder

31

The Transformer Decoder is a

stack of Transformer Decoder
Blocks.

Each Block consists of:
* Self-attention
 Add & Norm
* Feed-Forward
 Add & Norm

That’s it! We’'ve gone through
the Transformer Decoder.

Repeat for number

of encoder blocks

Probabilities

Softmax
N
Linear
AN

Add & Norm
N

Feed-Forward

/I\

ﬁ

Add & Norm
AN
Masked Multi-

Head Attention

w Block

Add Position
Embeddings

T

Embeddings

Decoder Inputs




The Transformer Encoder Probabilities
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Softmax
N
The Transformer Decoder e
constrains to unidirectional N
context, as for language Add & Norm
models. N T
_ . . 22 Feed-Forward
What if we want bidirectional = = A
. . . q. . 2 A
context, like in a bidirectional c 2 |
o2 Add & Norm
RNN? 23 ﬁ X
This is the Transformer o & MUt
) ) & Attention
Encoder. The only difference is v ©

that we remove the masking ( w Block

in the self-attention. |
Add Position

Embeddings

No Masking! T

Embeddings

Decoder Inputs




Probabilities

The Transformer Encoder-Decoder softmasx
Linear
e Recall that in machine 4
. Add & Norm
translation, we processed the N
source sentence with a Feed-Forward
bidirectional model and T
. Add & Norm
generated the target with a Add & Norm A
idirectional model * Haead
uni ' Feed-Forward b ECTIEER)
* For this kind of seq2seq A J
format, we often use a Add & Norm Add & Norm
Transformer Encoder-Decoder. e i Masked Multi-

. Head Attention
 We use a hormal Transformer ST ol

Encoder. w o w Block

e Qur Transformer Decoder is | Add Position

o Add Position Embeddings
modified to perform cross- Embeltl:l\dings 9

attention to the output of the

Embeddings ETIECENIE

33 Encoder. Encoder Inputs Decoder Inputs




Cross-attention (details)

34

We saw that self-attention is when keys,
qgueries, and values come from the same
source.

In the decoder, we have attention that
looks more like what we saw last week.

Add & Norm
Add & Norm A
Let h4, ..., h,, be output vectors from the N I*’LUIU-H.eod
ttention
Transformer encoder; x; € R R
. T ( Zl, EER , Zn
Let z4, ..., z,, be input vectors from the dd & Norm Add & Norm
N
Transformer decoder, z; € R? T Masked Multi-
. Head Attention
Then keys and values are drawn from the Attention w
encoder (like a memory): w — | Block
| .
° ki — Khi; Vi = Vhl Add Position ekl [PEElten
. Embeddings Embeddings
And the queries are drawn from the ,
Embeddings

dECOder, q; = QZi' Embeddings

Encoder Inputs Decoder Inputs



Cross-attention (details)

e Let’s look at how cross-attention is computed, in matrices.
e Let H = [hy; ...; hy ] € RT*4 be the concatenation of encoder vectors.

« LetZ = [zq; ...; 21 | € RT*? be the concatenation of decoder vectors.
» The output is defined as output = softmax(ZQ(HK) ") x HV.

First, take the query-key dot All pairs of
products in one matrix 70 = ZOKTHT attention scores!
multiplication: ZQ(HK)T KT HT T
eER
e

Next, softmax, and

compute the weighted softmax| zZoKTHT | gy
average with another

matrix multiplication. \ /

output € RT*¢

35
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