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Lecture Plan
Lecture 11: Transformers 

1. Notification on “Discussion in Class” 

2. Recap Transformer Architectures 

3. Positional Embeddings 

4. Great results with Transformers 

5. Drawbacks and variants of Transformers 



The Transformer Decoder

31

• The Transformer Decoder is a 
stack of Transformer Decoder 
Blocks.

• Each Block consists of:

• Self-attention

• Add & Norm

• Feed-Forward

• Add & Norm

• That’s it! We’ve gone through 
the Transformer Decoder.

Transformer Decoder



The Transformer Encoder
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• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
models.

• What if we want bidirectional 
context, like in a bidirectional 
RNN?

• This is the Transformer 
Encoder. The only difference is 
that we remove the masking 
in the self-attention.

Transformer DecoderNo Masking!



The Transformer Encoder-Decoder
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• Recall that in machine 
translation, we processed the 
source sentence with a 
bidirectional model and 
generated the target with a 
unidirectional model.

• For this kind of seq2seq 
format, we often use a 
Transformer Encoder-Decoder.

• We use a normal Transformer 
Encoder.

• Our Transformer Decoder is 
modified to perform cross-
attention to the output of the 
Encoder.



Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the 
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝒑𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝒑𝑖 to our inputs!

• Recall that 𝒙𝑖 is the embedding of the word at index 𝑖. The positioned embedding is:

෥𝒙𝑖 = 𝒙𝑖 + 𝒑𝑖
In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…
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• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

•  Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids 

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =
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Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/
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[Shaw et al., 2018]

[Wang et al., 2019]

• Learned absolute position representations: Let all 𝑝𝑖 be learnable parameters!

Learn a matrix 𝒑 ∈ ℝ𝑑×𝑛, and let each 𝒑𝑖 be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

•  Cons:

• Definitely can’t extrapolate to indices outside 1, … , 𝑛.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


Positional Embeddings
• Motivating Example:


• The dog chased another dog


• -> Without any positional information, 
the output is identical for the same 
token in different positions.

https://huggingface.co/blog/designing-positional-encoding 

https://huggingface.co/blog/designing-positional-encoding
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Positional Embeddings
• Desirable Properties


• Property 1 - Unique encoding for each position (across sequences)


• Property 2 - Linear relation between two encoded positions


• Property 3 - Generalizes to longer sequences than those encountered in 
training


• Property 4 - Generated by a deterministic process the model can learn


• Property 5 - Extensible to multiple dimensions



Positional Embeddings: Integer Position Encoding



Positional Embeddings: Binary Position Encoding



Positional Embeddings: Binary Position Encoding



Positional Embeddings: Binary Position Encoding



Positional Embeddings: Sinusoidal Positional Encoding



Common, modern position embeddings - RoPE
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High level thought process: a relative position embedding should be some 𝑓(𝑥, 𝑖) 
s.t. 

𝑓 𝑥, 𝑖 , 𝑓 𝑦, 𝑗 = 𝑔(𝑥, 𝑦, 𝑖 − 𝑗)

That is, the attention function only gets to depend on the relative position (i-j). How 
do existing embeddings not fulfill this goal?

      

 

   



RoPE – Embedding via rotation
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RoPE – From 2 to many dimensions
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Just pair up the coordinates and rotate them in 2d (motivation: complex numbers)

[Su et al 2021]



Positional Embeddings: RoPE



Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine 
Translation BLEU scores

Also more efficient to 
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]37
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Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation! 

The old standard

38

https://arxiv.org/pdf/1801.10198.pdf


Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll 
go over next.

Transformers’ parallelizability allows for efficient pretraining, and have made them 
the de-facto standard. 

On this popular aggregate 
benchmark, for example:

All top models are 
Transformer (and 
pretraining)-based. 
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https://arxiv.org/pdf/1801.10198.pdf


Outline

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers
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• Training instabilities (Pre vs Post norm)

• Quadratic compute in self-attention :

• Computing all pairs of interactions means our computation grows 
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

What would we like to fix about the Transformer?

41



Pre vs Post norm
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• One of the benefits of self-attention over recurrence was that it’s highly 
parallelizable.

• However, its total number of operations grows as 𝑂 𝑛2𝑑 , where 𝑛 is the 
sequence length, and 𝑑 is the dimensionality.

Quadratic computation as a function of sequence length

43

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

Need to compute all 
pairs of interactions!
  𝑂 𝑛2𝑑𝐾⊤ 𝑋⊤

𝑋𝑄

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎 (though for large language models it’s much larger!).

• So, for a single (shortish) sentence,  𝑛 ≤ 30; 𝑛2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑛 = 512.

• But what if we’d like 𝒏 ≥ 𝟓𝟎, 𝟎𝟎𝟎? For example, to work on long documents?



Back to the future – RNNs are back!
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If you want really long context, RNNs provide this (linear complexity).
Modern RNNs (RWKV, Mamba, etc) are getting better!

             

RNNs only require computations!

Hwaran Lee



• As Transformers grow larger, a larger and larger percent of compute is outside the 
self-attention portion, despite the quadratic cost.

• In practice, production Transformer language models use quadratic cost attention

• The cheaper methods tend not to work as well at scale.

• Systems optimizations work well (Flash attention – Jun 2022)

Do we even need to remove the quadratic cost of attention?

46



Do Transformer Modifications Transfer?

47

• "Surprisingly, we find that most modifications do not meaningfully improve 
performance."



Transformer
• Transformer architecture specifications



Transformer
• Advantages


• Easier to capture long-range dependencies: we draw attention between every 
pair of word


• Easier to parallelize


• Drawbacks


• Are positional encodings enough to capture positional information?


• Otherwise self-attention is an un unordered function of its input


• Quadratic computation in self-attention


• Can become very slow when the sequence length is large



Transformer
• Efficient Transformers



Transformer
• Longformer / Big Bird



Transformer
• Linformer



Transformer
• Vision Transformer (ViT)



Transformer
• Wav2vec 2.0

(Baevski et al., 2020): wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
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