
Introduction to NLP
CSE5321/CSEG321

Lecture 11. Transformers (2)
Hwaran Lee (hwaranlee@sogang.ac.kr)

Materials are referenced from Stanford CS224n

mailto:hwaranlee@sogang.ac.kr

Lecture Plan
Lecture 11: Transformers

1. Notification on “Discussion in Class”

2. Recap Transformer Architectures

3. Positional Embeddings

4. Great results with Transformers

5. Drawbacks and variants of Transformers

The Transformer Decoder

31

• The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

• Each Block consists of:

• Self-attention

• Add & Norm

• Feed-Forward

• Add & Norm

• That’s it! We’ve gone through
the Transformer Decoder.

Transformer Decoder

The Transformer Encoder

32

• The Transformer Decoder
constrains to unidirectional
context, as for language
models.

• What if we want bidirectional
context, like in a bidirectional
RNN?

• This is the Transformer
Encoder. The only difference is
that we remove the masking
in the self-attention.

Transformer DecoderNo Masking!

The Transformer Encoder-Decoder

33

• Recall that in machine
translation, we processed the
source sentence with a
bidirectional model and
generated the target with a
unidirectional model.

• For this kind of seq2seq
format, we often use a
Transformer Encoder-Decoder.

• We use a normal Transformer
Encoder.

• Our Transformer Decoder is
modified to perform cross-
attention to the output of the
Encoder.

Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝒑𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝒑𝑖 to our inputs!

• Recall that 𝒙𝑖 is the embedding of the word at index 𝑖. The positioned embedding is:

෥𝒙𝑖 = 𝒙𝑖 + 𝒑𝑖
In deep self-attention
networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add…

8

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

• Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2

/𝑑)

cos(𝑖/100002∗
𝑑
2

/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
im

en
si

o
n

9

[Shaw et al., 2018]

[Wang et al., 2019]

• Learned absolute position representations: Let all 𝑝𝑖 be learnable parameters!

Learn a matrix 𝒑 ∈ ℝ𝑑×𝑛, and let each 𝒑𝑖 be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

• Cons:

• Definitely can’t extrapolate to indices outside 1, … , 𝑛.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

10

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Positional Embeddings
• Motivating Example:

• The dog chased another dog

• -> Without any positional information,
the output is identical for the same
token in different positions.

https://huggingface.co/blog/designing-positional-encoding

https://huggingface.co/blog/designing-positional-encoding

Positional Embeddings
• Motivating Example:

• The dog chased another dog

• -> Without any positional information,
the output is identical for the same
token in different positions.

https://huggingface.co/blog/designing-positional-encoding

https://huggingface.co/blog/designing-positional-encoding

Positional Embeddings
• Desirable Properties

• Property 1 - Unique encoding for each position (across sequences)

• Property 2 - Linear relation between two encoded positions

• Property 3 - Generalizes to longer sequences than those encountered in
training

• Property 4 - Generated by a deterministic process the model can learn

• Property 5 - Extensible to multiple dimensions

Positional Embeddings: Integer Position Encoding

Positional Embeddings: Binary Position Encoding

Positional Embeddings: Binary Position Encoding

Positional Embeddings: Binary Position Encoding

Positional Embeddings: Sinusoidal Positional Encoding

Common, modern position embeddings - RoPE

11

High level thought process: a relative position embedding should be some 𝑓(𝑥, 𝑖)
s.t.

𝑓 𝑥, 𝑖 , 𝑓 𝑦, 𝑗 = 𝑔(𝑥, 𝑦, 𝑖 − 𝑗)

That is, the attention function only gets to depend on the relative position (i-j). How
do existing embeddings not fulfill this goal?

RoPE – Embedding via rotation

12

RoPE – From 2 to many dimensions

13

Just pair up the coordinates and rotate them in 2d (motivation: complex numbers)

[Su et al 2021]

Positional Embeddings: RoPE

Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine
Translation BLEU scores

Also more efficient to
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]37

Hwaran Lee

Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation!

The old standard

38

https://arxiv.org/pdf/1801.10198.pdf

Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll
go over next.

Transformers’ parallelizability allows for efficient pretraining, and have made them
the de-facto standard.

On this popular aggregate
benchmark, for example:

All top models are
Transformer (and
pretraining)-based.

39

https://arxiv.org/pdf/1801.10198.pdf

Outline

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

40

• Training instabilities (Pre vs Post norm)

• Quadratic compute in self-attention :

• Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

What would we like to fix about the Transformer?

41

Pre vs Post norm

42

• One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

• However, its total number of operations grows as 𝑂 𝑛2𝑑 , where 𝑛 is the
sequence length, and 𝑑 is the dimensionality.

Quadratic computation as a function of sequence length

43

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

Need to compute all
pairs of interactions!
 𝑂 𝑛2𝑑𝐾⊤ 𝑋⊤

𝑋𝑄

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎 (though for large language models it’s much larger!).

• So, for a single (shortish) sentence, 𝑛 ≤ 30; 𝑛2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑛 = 512.

• But what if we’d like 𝒏 ≥ 𝟓𝟎, 𝟎𝟎𝟎? For example, to work on long documents?

Back to the future – RNNs are back!

44

If you want really long context, RNNs provide this (linear complexity).
Modern RNNs (RWKV, Mamba, etc) are getting better!

RNNs only require computations!

Hwaran Lee

• As Transformers grow larger, a larger and larger percent of compute is outside the
self-attention portion, despite the quadratic cost.

• In practice, production Transformer language models use quadratic cost attention

• The cheaper methods tend not to work as well at scale.

• Systems optimizations work well (Flash attention – Jun 2022)

Do we even need to remove the quadratic cost of attention?

46

Do Transformer Modifications Transfer?

47

• "Surprisingly, we find that most modifications do not meaningfully improve
performance."

Transformer
• Transformer architecture specifications

Transformer
• Advantages

• Easier to capture long-range dependencies: we draw attention between every
pair of word

• Easier to parallelize

• Drawbacks

• Are positional encodings enough to capture positional information?

• Otherwise self-attention is an un unordered function of its input

• Quadratic computation in self-attention

• Can become very slow when the sequence length is large

Transformer
• Efficient Transformers

Transformer
• Longformer / Big Bird

Transformer
• Linformer

Transformer
• Vision Transformer (ViT)

Transformer
• Wav2vec 2.0

(Baevski et al., 2020): wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: Do we even need recurrence at all?
	Slide 4: The building block we need: self attention
	Slide 5: Self-Attention Hypothetical Example
	Slide 6: Self-Attention: keys, queries, values from the same sequence
	Slide 7: Barriers and solutions for Self-Attention as a building block
	Slide 8: Fixing the first self-attention problem: sequence order
	Slide 9: Position representation vectors through sinusoids
	Slide 10: Position representation vectors learned from scratch
	Slide 11: Common, modern position embeddings - RoPE
	Slide 12: RoPE – Embedding via rotation
	Slide 13: RoPE – From 2 to many dimensions
	Slide 14: Barriers and solutions for Self-Attention as a building block
	Slide 15: Adding nonlinearities in self-attention
	Slide 16: Barriers and solutions for Self-Attention as a building block
	Slide 17: Masking the future in self-attention
	Slide 18: Barriers and solutions for Self-Attention as a building block
	Slide 19: Necessities for a self-attention building block:
	Slide 20: Outline
	Slide 21: The Transformer Decoder
	Slide 22: Recall the Self-Attention Hypothetical Example
	Slide 23: Hypothetical Example of Multi-Head Attention
	Slide 24: Sequence-Stacked form of Attention
	Slide 25: Multi-headed attention
	Slide 26: Multi-head self-attention is computationally efficient
	Slide 27: Scaled Dot Product [Vaswani et al., 2017]
	Slide 28: The Transformer Decoder
	Slide 29: The Transformer Encoder: Residual connections [He et al., 2016]
	Slide 30: The Transformer Encoder: Layer normalization [Ba et al., 2016]
	Slide 31: The Transformer Decoder
	Slide 32: The Transformer Encoder
	Slide 33: The Transformer Encoder-Decoder
	Slide 34: Cross-attention (details)
	Slide 35: Cross-attention (details)
	Slide 36: Outline
	Slide 37: Great Results with Transformers
	Slide 38: Great Results with Transformers
	Slide 39: Great Results with Transformers
	Slide 40: Outline
	Slide 41: What would we like to fix about the Transformer?
	Slide 42: Pre vs Post norm
	Slide 43: Quadratic computation as a function of sequence length
	Slide 44: Back to the future – RNNs are back!
	Slide 46: Do we even need to remove the quadratic cost of attention?
	Slide 47: Do Transformer Modifications Transfer?
	Slide 48: Parting remarks

