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Lecture Plan

Lecture 12: Dependency Parsing

1. Syntactic Structure: Consistency and Dependency
2. Dependency Grammar and Treebanks

3. Transition-based dependency parsing

4. Neural dependency parsing

Key Learnings: Explicit linguistic structure and how a neural net can decide it



1. The linguistic structure of sentences — two views: Constituency I
= phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents

Starting unit: words

the, cat, cuddly, by, door

Words combine into phrases

the cuddly cat, by the door

Phrases can combine into bigger phrases

the cuddly cat by the door
I 12



The linguistic structure of sentences — two views: Constituency = I
phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents.

the cat

a dog
large in a crate
barking on the table
cuddly by the door

large barking
talk to
I walked behind
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Two views of linguistic structure: Dependency structure

* Dependency structure shows which words depend on (modify, attach to, or are
arguments of) which other words.

Look in the large crate in the kitchen by the door

I 16



Why do we need sentence structure?

Humans communicate complex ideas by composing words together
into bigger units to convey complex meanings

Human listeners need to work out what modifies [attaches to] what

A model needs to understand sentence structure in order to be able
to interpret language correctly



Prepositional phrase attachment ambiguity

San Joss cope kBl man with knife Cose
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Prepositional phrase attachment ambiguity

Scientists count whales from space

Scientists count whales from space

I 20




PP attachment ambiguities multiply

* A key parsing decision is how we ‘attach’ various constituents
e PPs, adverbial or participial phrases, infinitives, coordinations, etc.

The board approved [its acquisition] [by Royal Trustco Ltd.]
fof Toronto]

[for $27 a share]

[at its monthly meeting].

Catalan numbers: C, = (2n)!/[(n+1)!n!]
An exponentially growing series, which arises in many tree-like contexts:

- E.g., the number of possible triangulations of a polygon with n+2 sides
21 « Turns up in triangulation of probabilistic graphical models (CS228)....




Coordination scope ambiguity

Shuttle veteran and longtime NASA executive Fred Gregory appointed to board

Shuttle veteran and longtime NASA executive Fred Gregory appointed to board
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Coordination scope ambiguity




Adjectival/Adverbial Modifier Ambiguity

| ' ; mm a nu.'c':u and bell s & Em;‘e'n; T-L-L-;z--- B

TC RING DAY

ILILISSTON

— N e
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Verb Phrase (VP) attachment ambiguity

theguardian

home ) world ) americas asia

Rio de Janeiro

Mutilated body washes up
on Rio beach to be used for
Olympics beach volleyball

6/29/16, 1:48 PM
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Dependency paths help extract semantic interpretation — I
simple practical example: extracting protein-protein interaction

demonstrated

lﬁﬂg?//' \\\gﬁmp
results mark interacts nmod:with

\

detl that advmod SasAh
nsubj

cas?/ N”'Jia”d
KaiC rythmically ith KaiA and KaiB

conj:and cc

The

KaiC €nsubj interacts nmod:with =» SasA
KaiC €nsubj interacts nmod:with =» SasA conj:and=>» KaiA
KaiC €nsubj interacts nmod:with =» SasA conj:and=> KaiB

[Erkan et al. EMNLP 07, Fundel et al. 2007, etc.]
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2. Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

subTitted
Rills were RBrownback

ports /////i;7k\\\\\
///<;7\\\\\ by Senator Republican

on and immigration
Kansas

I |
of
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Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted
The arrows are )
HSUb_].[‘QG}/ aux \(:bl
commonly typed
i Bill B back
with the name of 1LLS were rownbac

_ nnm%
grammatical pOTtS case at appos
relations (subject, _ |
orepositional object case cc conj by Senator Republican

apposition, etc.) on and immigration ”modl

Kansas
casel

of
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Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

An arrow connects a head
with a dependent

Usually, dependencies
form a tree (a connected,
acyclic, single-root graph)

30

submitted
nsubj:;fa/ss/ l aux \c:bl
Rills were Rrownback

nmodl

case
ports flat appos
Cc’%\conj by Senator Republican

on and immigration nmodl

Kansas
casel

of




Panini’s grammar (c. 5th century BCE)

Gallery: http://wellcomeimages.org/indexplus/image/L0032691.html
CC BY 4.0 File:Birch bark MS from Kashmir of the Rupavatra Wellcome L0032691.jpg
But this comes from much later — originally the grammar was oral
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Dependency Grammar/Parsing History

The idea of dependency structure goes back a long way
e To Panini’s grammar (c. 5th century BCE)
* Basic approach of 1st millennium Arabic grammarians

Constituency/context-free grammar is a new-fangled invention
e 20th century invention (R.S. Wells, 1947; then Chomsky 1953, etc.)
Modern dependency work is often sourced to Lucien Tesniere (1959)

» Was dominant approach in “East” in 20t Century (Russia, China, ...)
* Good for free-er word order, inflected languages like Russian (or Latin!)

Used in some of the earliest parsers in NLP, even in the US:

* David Hays, one of the founders of U.S. computational linguistics, built early (first?)
dependency parser (Hays 1962) and published on dependency grammar in Language

32




Dependency Grammar and Dependency Structure

=

ROOT Discussion of the outstanding issues was completed .

e Some people draw the arrows one way; some the other way!
* Tesniere had them point from head to dependent — we follow that convention
 We usually add a fake ROOT so every word is a dependent of precisely 1 other node

I 33



The rise of annotated data & Universal Dependencies treebanks

Brown corpus (1967; PoS tagged 1979); Lancaster-IBM Treebank (starting late 1980s);
Marcus et al. 1993, The Penn Treebank, Computational Linguistics;
Universal Dependencies: http://universaldependencies.org/

[context] [conllu]

puncts

ccom
pnsubj
amad conj
—“”5““J nfrru_mrl' —J -/ —"“°”“’°“" _\‘—

76 think Miramar a famous goat trainer or somethlng
[context] [conllu]

<«advmod

-/—auxpassw punct

nsubjpass xcomp \-

e “LeropN') teun
ty

77 Why is the called Miramar ?

[context] [conllu]

puncte

nmod
aux ccomp
cuxy” ERomy ™ pRONJ " ?_ DPf
—r—, —— —— )

nsubj
84/ Do you think there are any koreans in Miramar ?
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http://universaldependencies.org/

The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful than writing a grammar
(by hand)

But a treebank gives us many things
e Reusability of the labor

* Many parsers, part-of-speech taggers, etc. can be built on it
* Valuable resource for linguistics

* Broad coverage, not just a few intuitions
* Frequencies and distributional information
* A way to evaluate NLP systems

35




Dependency Conditioning Preferences

What are the straightforward sources of information for dependency parsing?

1. Bilexical affinities The dependency [discussion = issues] is plausible

2. Dependency distance Most dependencies are between nearby words

3. Intervening material Dependencies rarely span intervening verbs or punctuation
4. Valency of heads How many dependents on which side are usual for a head?

W

I ROOT Discussion of the outstanding issues was completed .
36



Dependency Parsing

A sentence is parsed by choosing for each word what other word (including ROOT) it is
a dependent of

e Usually some constraints:
* Only one word is a dependent of ROOT
* Don’t want cyclesA—-> B,B > A
* This makes the dependencies a tree
* Final issue is whether arrows can cross (be non-projective) or not

AT

ROOT give a talk tomorrow neural networks

37




Projectivity

I 38

Definition of a projective parse: There are no crossing dependency arcs when the
words are laid out in their linear order, with all arcs above the words

Dependencies corresponding to a CFG tree must be projective
* |.e., by forming dependencies by taking 1 child of each category as head

Most syntactic structure is projective like this, but dependency theory normally does
allow non-projective structures to account for displaced constituents

* You can’t easily get the semantics of certain constructions right without these

nonprojective dependencies
Yoo

XN

Who did Bill buy the coffee from yesterday ?




3. Methods of Dependency Parsing

1.

Dynamic programming

Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse items
with heads at the ends rather than in the middle

Graph algorithms
You create a Minimum Spanning Tree for a sentence

McDonald et al.’s (2005) O(n?) MSTParser scores dependencies independently using an
ML classifier (he uses MIRA, for online learning, but it can be something else)

Neural graph-based parser: Dozat and Manning (2017) et seq. — very successful!
Constraint Satisfaction

Edges are eliminated that don’t satisfy hard constraints. Karlsson (1990), etc.
“Transition-based parsing” or “deterministic dependency parsing”

Greedy choice of attachments guided by good machine learning classifiers

E.g., MaltParser (Nivre et al. 2008). Has proven highly effective. And fast.




Greedy transition-based parsing [Nivre 2003]

 Asimple form of a greedy discriminative dependency parser
 The parser does a sequence of bottom-up actions

* Roughly like “shift” or “reduce” in a shift-reduce parser — CS143, anyone?? — but the
“reduce” actions are specialized to create dependencies with head on left or right

 The parser has:

 a stack o, written with top to the right
* which starts with the ROOT symbol

* a buffer B, written with top to the left
* which starts with the input sentence

* a set of dependency arcs A
* which starts off empty

* a set of actions

40




Basic transition-based dependency parser

Start: 0 =[ROOT],B=w,, .., w,,A=0Q

1. Shift o, w;|B,A=>co|w,B, A

2. Left-Arc, o|w;|w, B, A -> o|w,, B, AU{r(w,w;,)}
3. Right-Arc, o|w;|w, B, A=> o|w, B, AU{r(w,w,)}
Finish:o=[w],B=0

I 41



Arc-standard transition-based parser
(there are other transition schemes ...)
Analysis of “| ate fish”

Start s 0= 00T} B=w; ., 1, A=0
[{[root]}] | ate fish | ::A ‘ﬁ'ﬁ“ﬁ‘@”

Shift g0
[[ [root] | | }] ‘ate | fish |

Shift

[root] 1 ate | fish |

I 42



Arc-standard transition-based parser
Analysis of “I ate fish”

Left Arc
[[[root]]\ | ![ate]]

Shift
[[ root] | ate ﬂ fish |

A +=
[‘ [root]] ‘ ate ’] nsubj(ate = 1)

[\ [root] ate fish ﬂ

—
—
Right Arc -
[[750’(]] ate | fish ﬂﬂ[\ [root] | ate !] obi(ate = fish)
—

Right Arc
I | [root] ]

A +=
[root] ] root([root] > ate)
Finish

Nota bene:

In this example
I’'ve at each step
made the
“correct” next
transition.

But a parser has
to work this out -
by exploring or
inferring!

A ={ nsubj(ate = I),

obj(ate = fish)
root([root] = ate) }



MaltParser [Nivre and Hall 2005]

44

We have left to explain how we choose the next action ¥}
 Answer: Stand back, | know machine learning!

Each action is predicted by a discriminative classifier (e.g., softmax classifier) over each
legal move

* Max of 3 untyped choices (max of |[R| X 2 + 1 when typed)
* Features: top of stack word, POS; first in buffer word, POS; etc.
There is NO search (in the simplest form)

* But you can profitably do a beam search if you wish (slower but better):
* You keep k good parse prefixes at each time step

The model’s accuracy is fractionally below the state of the art in dependency parsing,
but

It provides very fast linear time parsing, with high accuracy — great for parsing the web




Conventional Feature Representation

Stack Buffer
i ROOT ~ hasVBZ good JJ ! ! controlNN ... :
/nsubj
He PRP

binary, sparse
dim =10°-10’

Feature templates: usually a combination of 1-3
elements from the configuration

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

: sl.w =good A sl.t =JJ .
: §2.w = has A s2.t = VBZ A sl.w = good

Indicator features lc(sg).t = PRP A so.t = VBZ A s1.t = JJ

le(s2).w = He Alc(s2).l = nsubj A se.w = has

.
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Evaluation of Dependency Parsing: (labeled) dependency accuracy

Acc = # correct deps

/h‘ //_\A\A # of deps

ROOT Sh he vid | as= A/ = 80%
e saw the video lecture LAS = 2/5 = 40%

0 1 2 3 4 5

Gold Parsed

1 2 She nsubj 1 2 She nsubj
2 0 saw root 2 0 saw root

3 5 the det 3 4 the det

4 5 video nn 4 5 video nsubj
5 2 lecture obj 5 2 lecture ccomp




4. Why do we gain from a neural dependency parser?
Indicator Features Revisited

Categorical features are:
* Problem #1: sparse

Neural Approach:

learn a dense and compact feature representation
 Problem #2: incomplete

 Problem #3: expensive to compute

Stack Buffer
More than 95% of parsing time is . ROOT  hasVBZ goodJJ} | controlNN ..
consumed by feature computation ] E(nsubj
e_
proseeeg et pesnessseeey 3 e }
: s2.w = has A 52.t = VBZ A sl.w = good ; . 0.1{0.9]-0.210.3] ... |-0.1]-0.5
| lo(s2)t = PRP A syt = VBZAsit=J] dim = ~1000

le(sg).w = He Alc(s2).l = nsubj A sp.w = has

oooooooooooooooooooooooooooooooooooooooooooooo

48




A neural dependency parser [Chen and Manning 2014]

e Results on English parsing to Stanford Dependencies:
* Unlabeled attachment score (UAS) = head

* Labeled attachment score (LAS) = head and label

Parser UAS LAS sent. /s
MaltParser 89.8 87.2 469
MSTParser 91.4 38.1 10

TurboParser 92.3 89.6 8
C& M 2014 92.0 89.7 654

I 49



First win: Distributed Representations

 We represent each word as a d-dimensional dense vector (i.e., word embedding)

* Similar words are expected to have close vectors.

o

e Meanwhile, part-of-speech tags (POS) and

dependency labels are also represented as was were
d-dimensional vectors. &@ &
* The smaller discrete sets also exhibit many & good
IS

semantical similarities.
come
NNS (plural noun) should be closg to NN (singu!@):urgb :

nummod (numerical modifier) should e close to dM (adjective modifier). :

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Extracting Tokens & vector representations from configuration

« \We extract a set of tokens based on the stack / buffer positions:

Stack Buffer
{ ROOT  has.VBZ  good JJ ! control NN .
/nsubj
He_PRP

word POS dep
S1 good 1] 1) A concatenation
$2 has VBZ 1) of the vector
b1 control NN 1) representation of
Ic(s1) w=p O + 0 + 0 all these is the
rc(s1) 1) 1) 1) neural
Ic(s2) He PRP nsubj representation of
rc(s2) 1) 1) 1) a configuration
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Second win: Deep Learning classifiers are non-linear classifiers

A softmax classifier assigns classes y € C based on inputs x € R% via the probability:
exp(W,.x)

p(ylr) = Zle exp(W,.z)

Traditional ML classifiers (including Naive Bayes, SVMs, logistic regression and softmax
classifier) are not very powerful classifiers: they only give linear decision boundaries

But neural networks can use multiple layers to learn much more complex nonlinear
decision boundaries

(S1¢)




Neural Dependency Parser Model Architecture
(A simple feed-forward neural network multi-class classifier)

Log loss (cross-entropy error) will be back-
propagated to the embeddings

Softmax probabilities— { Shift, Left-Arc,, Right-Arc, }

Output layer y
y = softmax(Uh + b,) ( )

The hidden layer re-represents the input —
M it moves inputs around in an intermediate
Hidden layer h

9000000 |ayer.v-ector. space—so it can be easily
h = ReLU(Wx + b,) classified with a (linear) softmax

Inputlayerx | ) )@ LEOHC T

lookup + concat * Wins:
Stack Buffer Distributed representations!
s . : Non-linear classifier!
* ROOT  hasVBZ  good )| ' control NN o
nsuh]
He PRP
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Dependency parsing for sentence structure

Chen & Manning (2014) showed that neural networks can accurately
determine the structure of sentences, supporting meaning interpretation

nsubjpass
ux nmod nmod
Wﬁmr—auxpass VBN case :/_@p-case

Markets have been Jolted by concerns about Chlna.

This paper was the first simple and successful neural dependency parser

The dense representations (and non-linear classifier) let it outperform other
greedy parsers in both accuracy and speed
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Further developments in transition-based neural dependency parsing

This work was further developed and improved by others, including in particular at Google
* Bigger, deeper networks with better tuned hyperparameters
* Beam search
* Global, conditional random field (CRF)-style inference over the decision sequence
Leading to SyntaxNet and the Parsey McParseFace model (2016):
“The World’s Most Accurate Parser”
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html|

Method _____UAs LAS (PTB WS) SD 3.3)

~"~  Chen & Manning 2014  92.0 89.7
(= Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

QG
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https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Graph-based dependency parsers

 Compute a score for every possible dependency for each word

* Doing this well requires good “contextual” representations of each word token,
which we will develop in coming lectures

0.5 0.8
0.3 2.0
ROOT The big cat sat

e.g., picking the head for “big”

I 56



Graph-based dependency parsers

 Compute a score for every possible dependency (choice of head) for each word
* Doing this well requires more than just knowing the two words

 We need good “contextual” representations of each word token, which we will
develop in the coming lectures

* Repeatthe same process for each other word; find the best parse (MST algorithm)

0.5 0.8
0.3 2.0
ROOT The big cat sat

e.g., picking the head for “big”

I 57



A Neural graph-based dependency parser
[Dozat and Manning 2017; Dozat, Qi, and Manning 2017]

* This paper revived interest in graph-based dependency parsing in a neural world

* Designed a biaffine scoring model for neural dependency parsing
* Also crucially uses a neural sequence model, something we discuss later

e Really great results!

* But slower than the simple neural transition-based parsers
* There are n? possible dependencies in a sentence of length n

Method ____UAs LAS (PTB WS) SD 3.3)

~"~ Chen& Manning 2014 92.0 89.7
{5  Weiss et al. 2015 93.99 92.05
5 Andoretal. 2016 94.61 92.79

/\

Dozat & Manning 2017 95.74 94.08
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