Introduction to NLP

CSE5321/CSEG321

Lecture 13. Pretraining Hwaran Lee (

Lecture Plan

Lecture 13: Pre-training

- 1. Contextualized word embeddings
- 2. Pre-training and fine-tuning
- 3. GPT, ELMo, BERT

Limitations of word2vec

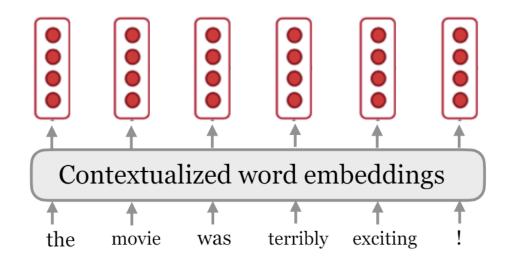
- One vector for each word type
 - (a.k.a. "static word embedding")

$$\mathbf{e}(play) = \begin{pmatrix} -0.224 \\ 0.130 \\ -0.290 \end{pmatrix}$$
0.276

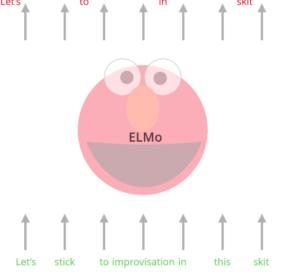
- Complex characteristics of word use: syntax and semantics
- Polysemous words, e.g., bank, mouse
 - $mouse^1$: a mouse controlling a computer system in 1968.
 - $mouse^2$: a quite animal like a mouse
 - $bank^{1}$: a bank can hold the investments in a custodial account
 - $bank^2$: as agriculture burgeons on the east bank

Motivation

- Let's build a vector for each word conditioned on its *context*!



$$f: (w_1, w_2, ..., w_n) \longrightarrow \mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$$



Motivation

- Sent #1: 그 사람은 미국으로 가버렸다.

- e(가버렸다) = ?
- Sent #2: 그 양반 갈 때도 예술로 가버렸다.
- e(가버렸다) = ?
- Sent #3: 그 오래된 와인은 맛이 가버렸다.
- e(가버렸다) = ?

- Sent #4: 그녀의 사연이 이해가 가버렸다.
- e(가버렸다)=?

- Sent #5: 결국 그는 먼 곳으로 가버렸다.

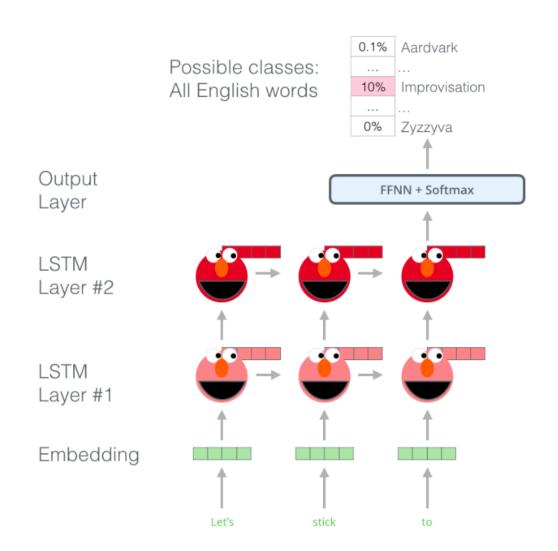
e(가버렸다)=?

Motivation

- Sent #1: 그 사람은 미국으로 가버렸다.
- Which of the following e() 버렸다) is expected to have the most similar vector to the first one?
 - (a) Sent #2: 그 양반 갈 때도 예술로 가버렸다.
 - (b) Sent #3: 그 오래된 와인은 맛이 가버렸다.
 - (c) Sent #4: 그녀의 사연이 이해가 가버렸다.
 - (d) Sent #5: 결국 그는 먼 곳으로 가버렸다.

The key idea of ELMo (Peters et al., 2018)

- Train two stacked LSTM-based language models on a large corpus
- Use the hidden states of the LSTMs for each token to compute a vector representation of each word



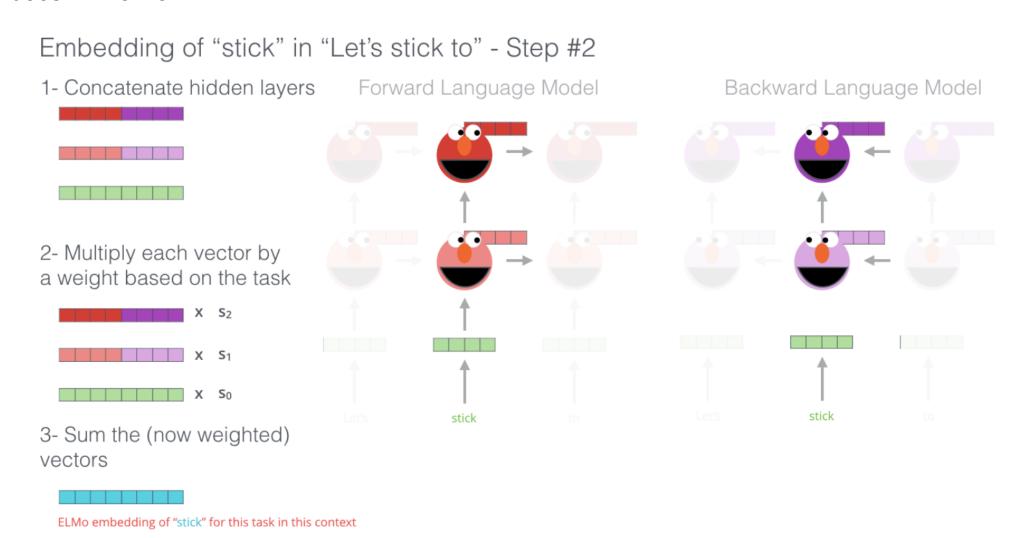
How does ELMo work?

- Contextualized word embeddings = The weighted average of input embeddings + all hidden representations (j)

$$ELMo_k^{task} = \mathbf{E}(R_k; \theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} h_{k,j}^{LM}$$

- The weights γ^{task} , s_j^{task} are task-dependent and learned

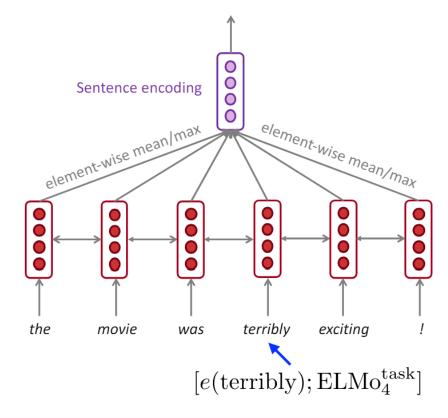
How does ELMo work?

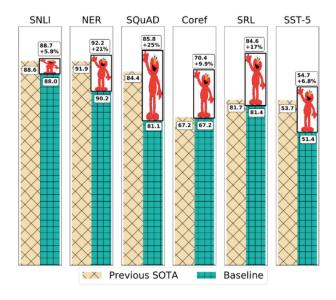


ELMo: pre-training and the use

- Data: 10 epochs on 1B Word Benchmark
- Training time: 2 weeks on 3 NVIDIA GTX 1080 GPUs

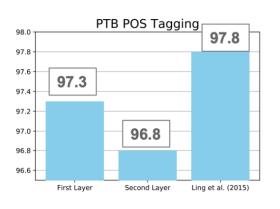
Example use: A
BiLSTM model for
sentiment classification



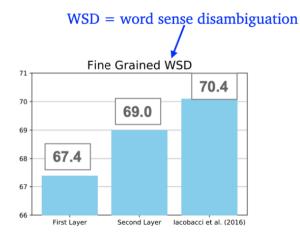


ELMo: some take-aways

- Why use both forward and backward language models?
 - Because it is important to model both left and right context
 - Bidirectionality is very important in language understanding tasks
- Why use the weighted average of different layers instead of just the top layer?
 - Because different layers are expected to encode different information



first layer > second layer

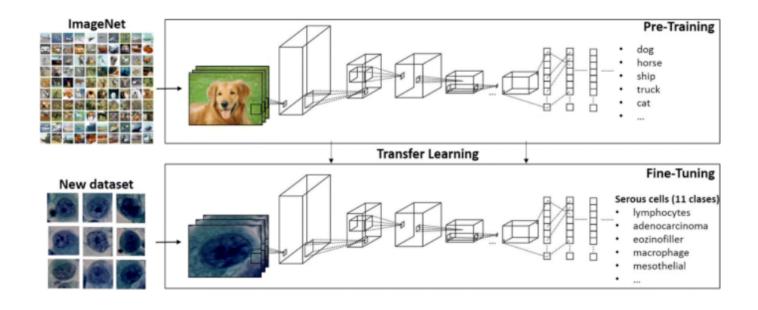


second layer > first layer

What is pre-training / fine-tuning

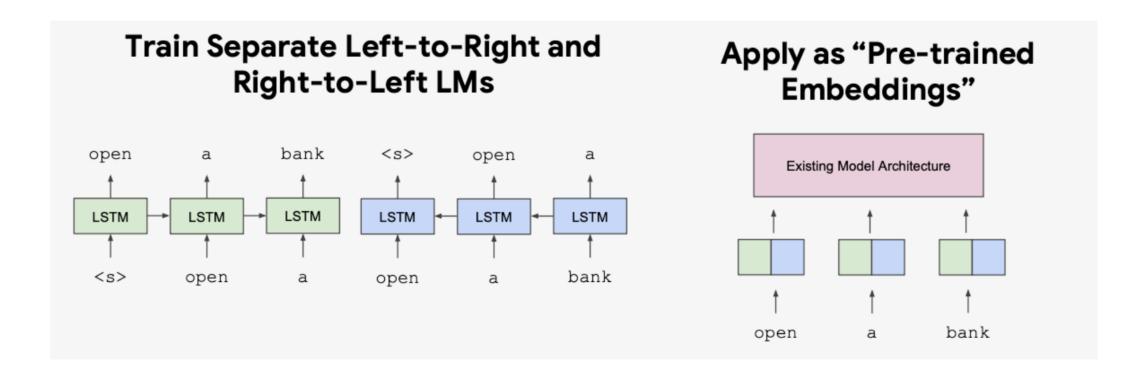
- "Pre-train" a model on a large dataset for task X, then "fine-tune" it on a dataset for task Y.
- Key idea: X is somewhat related to Y, so a model that can do X will have some good neural representations for Y as well
 - ImageNet pre-training is huge in computer vision: learning generic visual features for recognizing objects

Can we find some task X that can be useful for a wide range of downstream tasks Y?



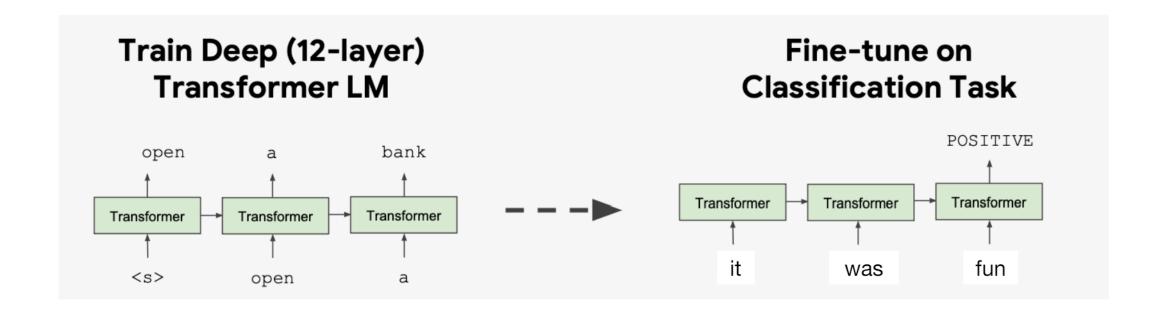
Feature-based vs fine-tuning approaches

- ELMo is a feature-based approach which only produces word embeddings that can be used as input representations of existing neural models



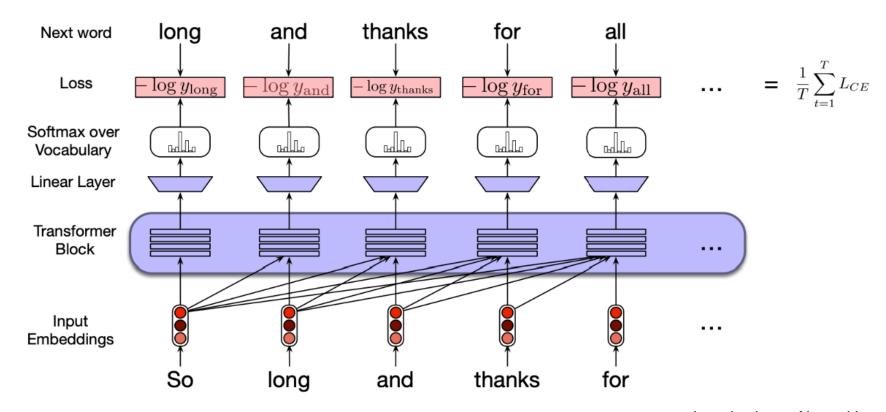
Feature-based vs fine-tuning approaches

- GPT / BERT (and most of following models) are fine-tuning approaches
 - Almost all models weights will be re-used, and only a small number of task-specific weights will be added for downstream tasks



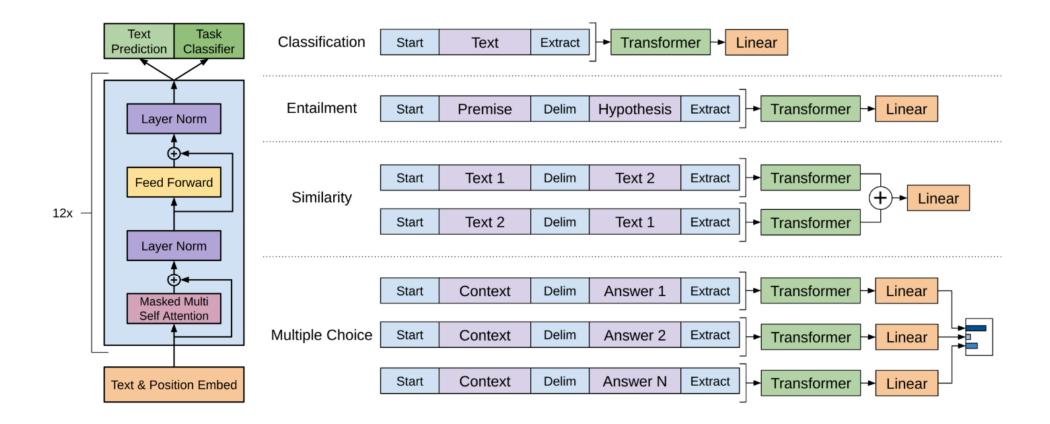
Generative Pre-Training (GPT) (Radford et al., 2018)

- Use a Transformer decoder (unidirectional; left-to-right) instead of LSTMs
- Use language models as a pre-training objective
- Trained on longer segments of text (512 BPE tokens), not just single sentences



Generative Pre-Training (GPT) (Radford et al., 2018)

- Fine-tune the entire set of model parameters on various downstream tasks



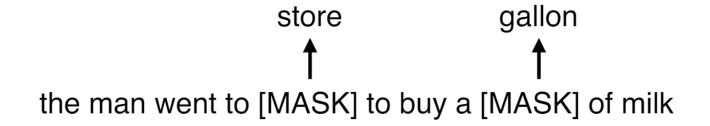
BERT: Bidirectional Encoder Representations from Transformers (Devlin et al., 2019)

- It is a fine-tuning approach based on a deep bidirectional Transformer encoder instead of a Transformer decoder
- The key: learn representations based on bidirectional contexts
 - Example #1: we went to the river bank
 - Example #2: I need to go to bank to make a deposit
- Two new pre-training objectives:
 - Masked language modeling (MLLM)
 - Next sentence prediction (NSP) but later work shows that NSP hurts performance

Masked Language Modeling (MLM)

- Q: Why we can't do language modeling with bidirectional models?

- Solution: Mask out k% of the input words, and then predict the masked words



MLM: 80-10-10 corruption

- For the 15% predicted words,
 - 80% of the training time, they replace it with [MASK] token
 - went to the store -> went to the [mask]
 - 10% of the training time, they replace it with a random word in the vocabulary
 - went to the store -> went to the running
 - 10% of the time, they keep it unchanged
 - went to the store -> went to the store

Why? Because [MASK] tokens are never seen during fine-tuning

Next Sentence Prediction (NSP)

- Motivation: many NLP downstream tasks require understanding the relationship between two sentences (natural language inference, paraphrase detection, question-answering)
- NSP is designed to reduce the gap between pre-training and fine-tuning

```
[CLS]: a special token always at the beginning

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

[SEP]: a special token used to separate two segments

They sample two cont
```

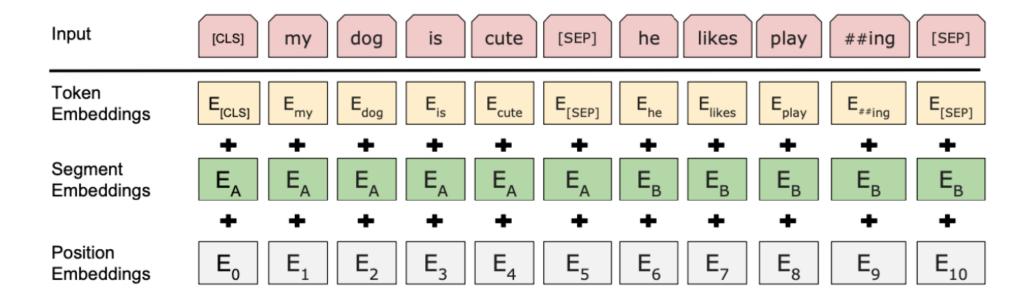
Input = [CLS] the man [MASK] to the store [SEP]
 penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

They sample two contiguous segments for 50% of the time and another random segment from the corpus for 50% of the time

BERT pre-training

- Vocabulary size: 30,000 wordpieces (common sub-word units)
- Input embeddings:

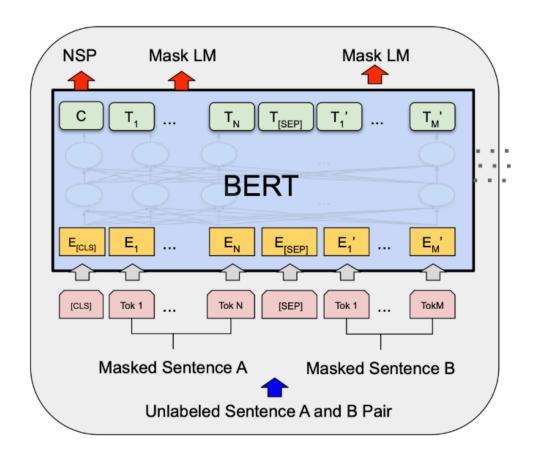


BERT pre-training

- BERT-base: 12 layers, 768 hidden size, 12 attention heads, 110M parameters (= same as OpenAI GPT)
- BERT-large: 24 layers, 1024 hidden size, 16 attention heads, 340M parameters
- Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B) (OpenAl GPT was trained on BooksCorpus only)
- Max sequence size: 512 wordpiece tokens
- Trained for 1M steps, batch size 128K

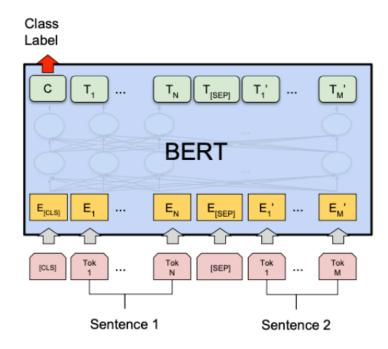
BERT pre-training

- MLM and NSP are trained together
- [CLS] is pre-trained for NSP
- Other token representations are trained for MLM

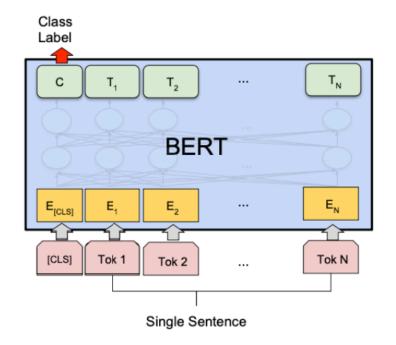


BERT pre-training

- Pre-train once, fine-tune many times (sentence-level tasks)



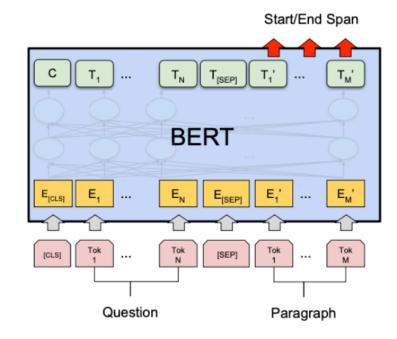
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



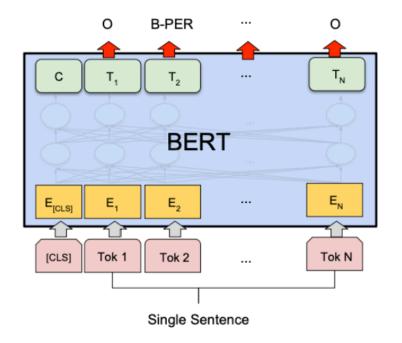
(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT pre-training

- Pre-train once, fine-tune many times (token-level tasks)



(c) Question Answering Tasks: SQuAD v1.1

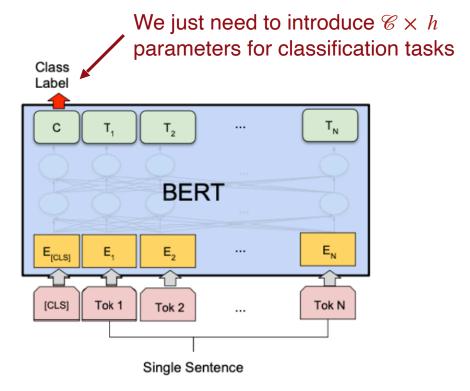


(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Example: sentiment classification

$$P(y = k) = softmax_k(\mathbf{W}_o \mathbf{h}_{[CLS]}), \ \mathbf{W}_o \in \mathbb{R}^{C \times h}$$

- All parameters will be learned together
 - original BERT parameters + new classifier parameters

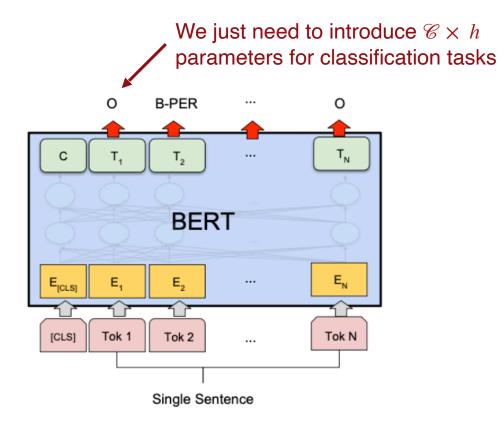


(b) Single Sentence Classification Tasks: SST-2, CoLA

Example: named entity recognition (NER)

$$P(y_i = k) = softmax_k(\mathbf{W}_o \mathbf{h}_i), \ \mathbf{W}_o \in \mathbb{R}^{C \times h}$$

- All parameters will be learned together
 - original BERT parameters + new classifier parameters



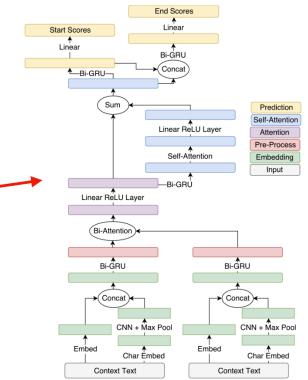
(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Experimental results: GLUE

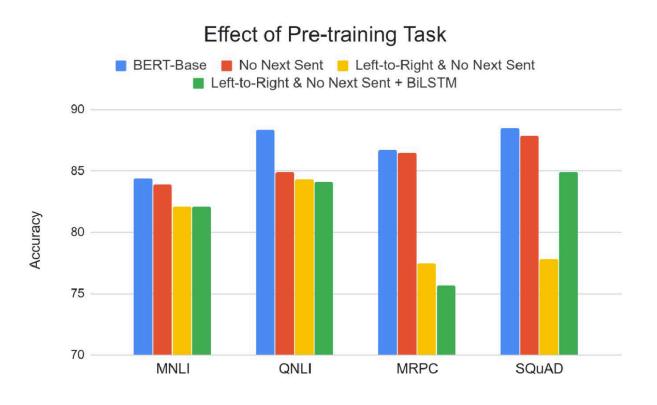
System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
$BERT_{BASE}$	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Experimental results: SQuAD

System	Dev		Test	
•	EM	F1	EM	F1
Top Leaderboard System	s (Dec	10th,	2018)	
Human	-	-	82.3	91.2
#1 Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
Publishe	ed			
BiDAF+ELMo (Single)	-	85.6	-	85.8
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	-
BERT _{LARGE} (Single)	84.1	90.9	-	-
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

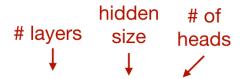


Ablation study: pre-training tasks



- MLM >> left-to-right LMs
- NSP improves on some tasks
- Note: later work (Joshi et al., 2020; Liu et al., 2019) argued that NSP is not useful

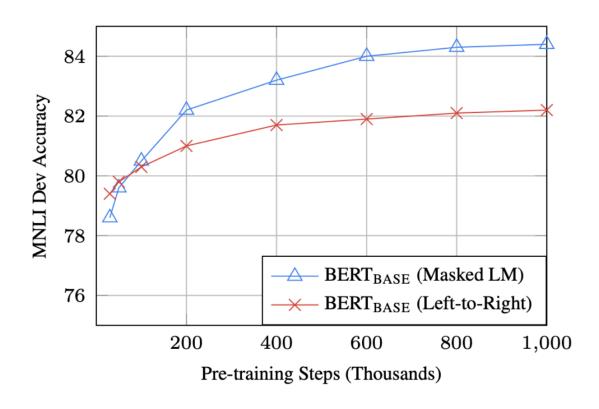
Ablation study: model sizes



Hyperparams			Dev Set Accuracy					
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

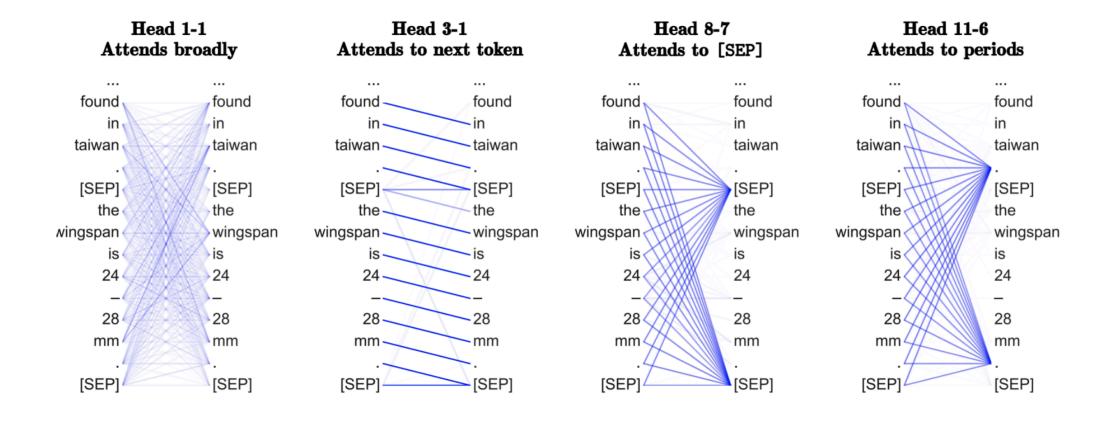
The bigger, the better!

Ablation study: training efficiency



MLM takes slightly longer to converge because it only predicts 15% of tokens

What does BERT learn?



ELMo vs GPT vs BERT

- Which of the following statements is INCORRECT?
 - (a) BERT was trained on more data than ELMo
 - (b) BERT builds on Transformer encoder, and GPT builds on Transformer decoder
 - (c) ELMo requires different model architectures for different tasks
 - (d) BERT was trained on data with longer contexts compared to GPT

